Abstract
We consider the problem of classifying graphs using graph kernels. We define a new graph kernel, called the generalized shortest path kernel, based on the number and length of shortest paths between nodes. For our example classification problem, we consider the task of classifying random graphs from two well-known families, by the number of clusters they contain. We verify empirically that the generalized shortest path kernel outperforms the original shortest path kernel on a number of datasets. We give a theoretical analysis for explaining our experimental results. In particular, we estimate distributions of the expected feature vectors for the shortest path kernel and the generalized shortest path kernel, and we show some evidence explaining why our graph kernel outperforms the shortest path kernel for our graph classification problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
This smallness assumption is for our analysis, and we believe that the situation is more or less the same for any d.
References
Bilgin, C., Demir, C., Nagi, C., Yener, B.: Cell-graph mining for breast tissue modeling and classification. In: 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2007, pp. 5311–5314. IEEE (2007)
Bollobás, B.: Random Graphs. Springer, New York (1998)
Borgwardt, K.M., Kriegel, H.-P.: Shortest-path kernels on graphs. In: Proceedings of ICDM (2005)
Borgwardt, K.M., Ong, C.S., Schönauer, S., Vishwanathan, S., Smola, A.J., Kriegel, H.-P.: Protein function prediction via graph kernels. Bioinformatics 21(suppl 1), i47–i56 (2005)
Fronczak, A., Fronczak, P., Hołyst, J.A.: Average path length in random networks. Phys. Rev. E 70(5), 056110 (2004)
Gärtner, T., Flach, P.A., Wrobel, S.: On graph kernels: hardness results and efficient alternatives. In: Schölkopf, B., Warmuth, M.K. (eds.) COLT/Kernel 2003. LNCS (LNAI), vol. 2777, pp. 129–143. Springer, Heidelberg (2003)
Havlin, S., Ben-Avraham, D.: Theoretical and numerical study of fractal dimensionality in self-avoiding walks. Phys. Rev. A 26(3), 1728 (1982)
Hermansson, L., Kerola, T., Johansson, F., Jethava, V., Dubhashi, D.: Entity disambiguation in anonymized graphs using graph kernels. In: Proceedings of the 22nd ACM International Conference on Conference on Information and Knowledge Management, pp. 1037–1046. ACM (2013)
Johansson, F., Jethava, V., Dubhashi, D., Bhattacharyya, C.: Global graph kernels using geometric embeddings. In: Proceedings of the 31st International Conference on Machine Learning (ICML-14), pp. 694–702 (2014)
Kolla, S.D.A., Koiliaris, K.: Spectra of random graphs with planted partitions (2013)
Kudo, T., Maeda, E., Matsumoto, Y.: An application of boosting to graph classification. In: Advances in Neural Information Processing Systems, pp. 729–736 (2004)
Liśkiewicz, M., Ogihara, M., Toda, S.: The complexity of counting self-avoiding walks in subgraphs of two-dimensional grids and hypercubes. Theor. Comput. Sci. 304(1), 129–156 (2003)
Shalev-Shwartz, S., Singer, Y., Srebro, N., Cotter, A.: Pegasos: primal estimated sub-gradient solver for SVM. Math. Program. 127(1), 3–30 (2011)
Shervashidze, N., Vishwanathan, S., Petri, T., Mehlhorn, K., Borgwardt, K.M.: Efficient graphlet kernels for large graph comparison. In Proceedings of AISTATS (2009)
Acknowledgements
This work is supported in part by the ELC project (MEXT KAKENHI No. 24106008) and also in part by the Swedish Foundation for Strategic Research.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Hermansson, L., Johansson, F.D., Watanabe, O. (2015). Generalized Shortest Path Kernel on Graphs. In: Japkowicz, N., Matwin, S. (eds) Discovery Science. DS 2015. Lecture Notes in Computer Science(), vol 9356. Springer, Cham. https://doi.org/10.1007/978-3-319-24282-8_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-24282-8_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24281-1
Online ISBN: 978-3-319-24282-8
eBook Packages: Computer ScienceComputer Science (R0)