Skip to main content

Enhancing Intelligent Property Valuation Models by Merging Similar Cadastral Regions of a Municipality

  • Conference paper
  • First Online:
Computational Collective Intelligence

Abstract

A method for enhancing property valuation models consists in determining zones of an urban municipality in which the prices of residential premises change similarly over time. Such similar zones are then merged into bigger areas embracing greater number of sales transactions which constitute a more reliable basis to construct accurate property valuation models. This is especially important when machine learning algorithms are employed do create prediction models. In this paper we present our further investigation of the method using the cadastral regions of a city as zones for merging. A series of evaluation experiments was conducted using real-world data comprising the records of sales and purchase transactions of residential premises accomplished in a Polish urban municipality. Six machine learning algorithms available in the WEKA data mining system were employed to generate property valuation models. The study showed that the prediction models created over the merged cadastral regions outperformed in terms of accuracy the models based on initial component regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lasota, T., Sawiłow, E., Trawiński, B., Roman, M., Marczuk, P., Popowicz, P.: A method for merging similar zones to improve intelligent models for real estate appraisal. In: Nguyen, N.T., Trawiński, B., Kosala, R. (eds.) ACIIDS 2015. LNCS, vol. 9011, pp. 472–483. Springer, Heidelberg (2015)

    Google Scholar 

  2. Kontrimas, V., Verikas, A.: The mass appraisal of the real estate by computational intelligence. Applied Soft Computing 11(1), 443–448 (2011)

    Article  Google Scholar 

  3. Zurada, J., Levitan, A.S., Guan, J.: A Comparison of Regression and Artificial Intelligence Methods in a Mass Appraisal Context. Journal of Real Estate Res. 33(3), 349–388 (2011)

    Google Scholar 

  4. Peterson, S., Flangan, A.B.: Neural Network Hedonic Pricing Models in Mass Real Estate Appraisal. Journal of Real Estate Research 31(2), 147–164 (2009)

    Google Scholar 

  5. Narula, S.C., Wellington, J.F., Lewis, S.A.: Valuating residential real estate using parametric programming. European Journal of Operational Research 217, 120–128 (2012)

    Article  MATH  Google Scholar 

  6. Antipov, E.A., Pokryshevskaya, E.B.: Mass appraisal of residential apartments: An application of Random forest for valuation and a CART-based approach for model diagnostics. Expert Systems with Applications 39, 1772–1778 (2012)

    Article  Google Scholar 

  7. D’Amato, M.: Comparing Rough Set Theory with Multiple Regression Analysis as Automated Valuation Methodologies. Int. Real Estate Review 10(2), 42–65 (2007)

    Google Scholar 

  8. Kusan, H., Aytekin, O., Özdemir, I.: The use of fuzzy logic in predicting house selling price. Expert Systems with Applications 37(3), 1808–1813 (2010)

    Article  Google Scholar 

  9. Musa, A.G., Daramola, O., Owoloko, A., Olugbara, O.: A Neural-CBR System for Real Property Valuation. Journal of Emerging Trends in Computing and Information Sciences 4(8), 611–622 (2013)

    Google Scholar 

  10. Woźniak, M., Graña, M., Corchado, E.: A survey of multiple classifier systems as hybrid systems. Information Fusion 16, 3–17 (2014)

    Article  Google Scholar 

  11. Krawczyk, B., Woźniak, M., Cyganek, B.: Clustering-based ensembles for one-class classification. Information Sciences 264, 182–195 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Burduk, R., Walkowiak, K.: Static classifier selection with interval weights of base classifiers. In: Nguyen, N.T., Trawiński, B., Kosala, R. (eds.) ACIIDS 2015. LNCS, vol. 9011, pp. 494–502. Springer, Heidelberg (2015)

    Google Scholar 

  13. Fernández, A., López, V.: José del Jesus, M., Herrera, F.: Revisiting Evolutionary Fuzzy Systems: Taxonomy, applications, new trends and challenges. Knowledge-Based Systems 80, 109–121 (2015)

    Article  Google Scholar 

  14. Lughofer, E.: Evolving Fuzzy Systems – Methodologies, Advanced Concepts and Applications. STUDFUZZ, vol. 266. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  15. Lughofer, E., Cernuda, C., Kindermann, S., Pratama, M.: Generalized smart evolving fuzzy systems. Evolving Systems (2015). doi:10.1007/s12530-015-9132-6

    Google Scholar 

  16. Król, D., Lasota, T., Nalepa, W., Trawiński, B.: Fuzzy system model to assist with real estate appraisals. In: Okuno, H.G., Ali, M. (eds.) IEA/AIE 2007. LNCS, vol. 4570, pp. 260–269. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  17. Król, D., Lasota, T., Trawiński, B., Trawiński, K.: Comparison of mamdani and TSK fuzzy models for real estate appraisal. In: Apolloni, B., Howlett, R.J., Jain, L. (eds.) KES 2007, Part III. LNCS (LNAI), vol. 4694, pp. 1008–1015. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Lasota, T., Telec, Z., Trawiński, B., Trawiński, K.: Exploration of bagging ensembles comprising genetic fuzzy models to assist with real estate appraisals. In: Corchado, E., Yin, H. (eds.) IDEAL 2009. LNCS, vol. 5788, pp. 554–561. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  19. Lasota, T., Telec, Z., Trawiński, B., Trawiński, K.: A multi-agent system to assist with real estate appraisals using bagging ensembles. In: Nguyen, N.T., Kowalczyk, R., Chen, S.-M. (eds.) ICCCI 2009. LNCS, vol. 5796, pp. 813–824. Springer, Heidelberg (2009)

    Google Scholar 

  20. Krzystanek, M., Lasota, T., Telec, Z., Trawiński, B.: Analysis of bagging ensembles of fuzzy models for premises valuation. In: Nguyen, N.T., Le, M.T., Świątek, J. (eds.) Intelligent Information and Database Systems. LNCS, vol. 5991, pp. 330–339. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  21. Lasota, T., Telec, Z., Trawiński, G., Trawiński, B.: Empirical comparison of resampling methods using genetic fuzzy systems for a regression problem. In: Yin, H., Wang, W., Rayward-Smith, V. (eds.) IDEAL 2011. LNCS, vol. 6936, pp. 17–24. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  22. Lasota, T., Telec, Z., Trawiński, B., Trawiński, K.: Investigation of the eTS Evolving Fuzzy Systems Applied to Real Estate Appraisal. Journal of Multiple-Valued Logic and Soft Computing 17(2–3), 229–253 (2011)

    Google Scholar 

  23. Lughofer, E., Trawiński, B., Trawiński, K., Kempa, O., Lasota, T.: On Employing Fuzzy Modeling Algorithms for the Valuation of Residential Premises. Information Sciences 181, 5123–5142 (2011)

    Article  Google Scholar 

  24. Trawiński, B.: Evolutionary Fuzzy System Ensemble Approach to Model Real Estate Market based on Data Stream Exploration. Journal of Universal Computer Science 19(4), 539–562 (2013)

    Google Scholar 

  25. Telec, Z., Trawiński, B., Lasota, T., Trawiński, G.: Evaluation of neural network ensemble approach to predict from a data stream. In: Hwang, D., Jung, J.J., Nguyen, N.-T. (eds.) ICCCI 2014. LNCS, vol. 8733, pp. 472–482. Springer, Heidelberg (2014)

    Google Scholar 

  26. Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical Machine Learning Tools and Techniques, 3rd edn. Morgan Kaufmann, San Francisco (2011)

    Google Scholar 

  27. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. of Machine Learning Research 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  28. Trawiński, B., Smętek, M., Telec, Z., Lasota, T.: Nonparametric Statistical Analysis for Multiple Comparison of Machine Learning Regression Algorithms. International Journal of Applied Mathematics and Computer Science 22(4), 867–881 (2012)

    MathSciNet  MATH  Google Scholar 

  29. García, S., Herrera, F.: An Extension on “Statistical Comparisons of Classifiers over Multiple Data Sets” for all Pairwise Comparisons. Journal of Machine Learning Research 9, 2677–2694 (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdan Trawiński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Lasota, T. et al. (2015). Enhancing Intelligent Property Valuation Models by Merging Similar Cadastral Regions of a Municipality. In: Núñez, M., Nguyen, N., Camacho, D., Trawiński, B. (eds) Computational Collective Intelligence. Lecture Notes in Computer Science(), vol 9330. Springer, Cham. https://doi.org/10.1007/978-3-319-24306-1_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24306-1_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24305-4

  • Online ISBN: 978-3-319-24306-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics