Abstract
Four variants of the eTS algorithms (evolving Takagi-Sugeno fuzzy systems) were implemented and examined in respect of their usefulness for the intelligent system of real estate market. The eTS algorithms were compared as regards their predictive accuracy with the Flexfis algorithm and ensembles employing general linear models (Glm) devoted to predict from a data stream of real estate sales transactions. The experiments were conducted in Matlab environment using real-world data taken from a dynamically changing real property market. The analysis of the results was performed using statistical methodology including nonparametric tests followed by post-hoc procedures designed especially for multiple N×N comparisons. The models produced by two versions of Simple_eTS and Flexfis algorithms and as well as ensembles composed of Glm models revealed statistically similar performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Nguyen, N.: Cripps. A.: Predicting housing value: A comparison of multiple regression analysis and artificial neural networks. Journal of Real Estate Research 22(3), 313 (2001)
Selim, H.: Determinants of house prices in Turkey: Hedonic regression versus artificial neural network. Expert Systems with Applications 36, 2843–2852 (2009)
D’Amato, M.: Comparing Rough Set Theory with Multiple Regression Analysis as Automated Valuation Methodologies. Int. Real Estate Review 10(2), 42–65 (2007)
Kontrimas, V., Verikas, A.: The mass appraisal of the real estate by computational intelligence. Applied Soft Computing 11(1), 443–448 (2011)
González, M.A.S., Formoso, C.T.: Mass appraisal with genetic fuzzy rule-based systems. Property Management 24(1), 20–30 (2006)
Guan, J., Zurada, J., Levitan, A.S.: An Adaptive Neuro-Fuzzy Inference System Based Approach to Real Estate Property Assessment. Journal of Real Estate Research 30(4), 395–421 (2008)
Król, D., Lasota, T., Nalepa, W., Trawiński, B.: Fuzzy system model to assist with real estate appraisals. In: Okuno, H.G., Ali, M. (eds.) IEA/AIE 2007. LNCS (LNAI), vol. 4570, pp. 260–269. Springer, Heidelberg (2007)
Król, D., Lasota, T., Trawiński, B., Trawiński, K.: Comparison of mamdani and TSK fuzzy models for real estate appraisal. In: Apolloni, B., Howlett, R.J., Jain, L. (eds.) KES 2007, Part III. LNCS (LNAI), vol. 4694, pp. 1008–1015. Springer, Heidelberg (2007)
Lasota, T., Telec, Z., Trawiński, B., Trawiński, K.: Exploration of bagging ensembles comprising genetic fuzzy models to assist with real estate appraisals. In: Corchado, E., Yin, H. (eds.) IDEAL 2009. LNCS, vol. 5788, pp. 554–561. Springer, Heidelberg (2009)
Lasota, T., Telec, Z., Trawiński, B., Trawiński, K.: A multi-agent system to assist with real estate appraisals using bagging ensembles. In: Nguyen, N.T., Kowalczyk, R., Chen, S.-M. (eds.) ICCCI 2009. LNCS, vol. 5796, pp. 813–824. Springer, Heidelberg (2009)
Krzystanek, M., Lasota, T., Telec, Z., Trawiński, B.: Analysis of bagging ensembles of fuzzy models for premises valuation. In: Nguyen, N.T., Le, M.T., Świątek, J. (eds.) Intelligent Information and Database Systems. LNCS, vol. 5991, pp. 330–339. Springer, Heidelberg (2010)
Lasota, T., Telec, Z., Trawiński, G., Trawiński, B.: Empirical comparison of resampling methods using genetic fuzzy systems for a regression problem. In: Yin, H., Wang, W., Rayward-Smith, V. (eds.) IDEAL 2011. LNCS, vol. 6936, pp. 17–24. Springer, Heidelberg (2011)
Lasota, T., Telec, Z., Trawiński, B., Trawiński, K.: Investigation of the eTS Evolving Fuzzy Systems Applied to Real Estate Appraisal. Journal of Multiple-Valued Logic and Soft Computing 17(2–3), 229–253 (2011)
Lughofer, E., Trawiński, B., Trawiński, K., Kempa, O., Lasota, T.: On Employing Fuzzy Modeling Algorithms for the Valuation of Residential Premises. Information Sciences 181, 5123–5142 (2011)
Trawiński, B.: Evolutionary Fuzzy System Ensemble Approach to Model Real Estate Market based on Data Stream Exploration. Journal of Universal Computer Science 19(4), 539–562 (2013)
Telec, Z., Trawiński, B., Lasota, T., Trawiński, G.: Evaluation of neural network ensemble approach to predict from a data stream. In: Hwang, D., Jung, J.J., Nguyen, N.-T. (eds.) ICCCI 2014. LNCS, vol. 8733, pp. 472–482. Springer, Heidelberg (2014)
Angelov, P., Filev, D.: An approach to online identification of Takagi-Sugeno fuzzy models. IEEE Trans. on Systems, Man and Cybernetics, part B 34(1), 484–498 (2004)
Angelov, P., Filev, D.: Simpl_eTS: a simplified method for learning evolving Takagi-Sugeno fuzzy models. In: The 2005 IEEE International Conference on Fuzzy Systems FUZZ-IEEE, Reno, Las Vegas, USA, 22–25 May 2005, pp. 1068–1073 (2005)
Victor, J., Dourado, A.: Evolving Takagi-Sugeno Fuzzy Models. Technical Report, CISUC (2003). http://cisuc.dei.uc.pt/acg/view_pub.php?id_p=760
Angelov, P., Victor, J., Dourado, A., Filev, D.: On-line evolution of Takagi-Sugeno fuzzy models. In: Proceedings of the 2nd IFAC Workshop on Advanced Fuzzy/Neural Control (AFNC 2004), Oulu, Finland (2004)
Lughofer, E., Klement, E.P.: FLEXFIS: a variant for incremental learning of Takagi-Sugeno fuzzy systems. In: Proc. of FUZZ-IEEE 2005, Reno, USA, pp. 915–920 (2005)
Lughofer, E.: FLEXFIS: A robust incremental learning approach for evolving TS fuzzy models. IEEE Transactions on Fuzzy Systems 16(6), 1393–1410 (2008)
Telec, Z., Trawiński, B., Lasota, T., Trawiński, K.: Comparison of evolving fuzzy systems with an ensemble approach to predict from a data stream. In: Bǎdicǎ, C., Nguyen, N.T., Brezovan, M. (eds.) ICCCI 2013. LNCS, vol. 8083, pp. 377–387. Springer, Heidelberg (2013)
Telec, Z., Trawiński, B., Lasota, T., Trawiński, G.: Evaluation of neural network ensemble approach to predict from a data stream. In: Hwang, D., Jung, J.J., Nguyen, N.-T. (eds.) ICCCI 2014. LNCS, vol. 8733, pp. 472–482. Springer, Heidelberg (2014)
Lughofer, E.: Evolving Fuzzy Systems – Methodologies, Advanced Concepts and Applications. Studies in Fuzziness and Soft Computing, vol. 266. Springer Verlag, Heidelberg (2011)
Demšar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7, 1–30 (2006)
García, S., Herrera, F.: An Extension on “Statistical Comparisons of Classifiers over Multiple Data Sets” for all Pairwise Comparisons. Journal of Machine Learning Research 9, 2677–2694 (2008)
Trawiński, B., Smętek, M., Telec, Z., Lasota, T.: Nonparametric Statistical Analysis for Multiple Comparison of Machine Learning Regression Algorithms. International Journal of Applied Mathematics and Computer Science 22(4), 867–881 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Grześlowski, M., Telec, Z., Trawiński, B., Lasota, T., Trawiński, K. (2015). Application of Evolving Fuzzy Systems to Construct Real Estate Prediction Models. In: Núñez, M., Nguyen, N., Camacho, D., Trawiński, B. (eds) Computational Collective Intelligence. Lecture Notes in Computer Science(), vol 9330. Springer, Cham. https://doi.org/10.1007/978-3-319-24306-1_59
Download citation
DOI: https://doi.org/10.1007/978-3-319-24306-1_59
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24305-4
Online ISBN: 978-3-319-24306-1
eBook Packages: Computer ScienceComputer Science (R0)