Skip to main content

Application of Evolving Fuzzy Systems to Construct Real Estate Prediction Models

  • Conference paper
  • First Online:
Computational Collective Intelligence

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9330))

  • 2308 Accesses

Abstract

Four variants of the eTS algorithms (evolving Takagi-Sugeno fuzzy systems) were implemented and examined in respect of their usefulness for the intelligent system of real estate market. The eTS algorithms were compared as regards their predictive accuracy with the Flexfis algorithm and ensembles employing general linear models (Glm) devoted to predict from a data stream of real estate sales transactions. The experiments were conducted in Matlab environment using real-world data taken from a dynamically changing real property market. The analysis of the results was performed using statistical methodology including nonparametric tests followed by post-hoc procedures designed especially for multiple N×N comparisons. The models produced by two versions of Simple_eTS and Flexfis algorithms and as well as ensembles composed of Glm models revealed statistically similar performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Nguyen, N.: Cripps. A.: Predicting housing value: A comparison of multiple regression analysis and artificial neural networks. Journal of Real Estate Research 22(3), 313 (2001)

    Google Scholar 

  2. Selim, H.: Determinants of house prices in Turkey: Hedonic regression versus artificial neural network. Expert Systems with Applications 36, 2843–2852 (2009)

    Article  Google Scholar 

  3. D’Amato, M.: Comparing Rough Set Theory with Multiple Regression Analysis as Automated Valuation Methodologies. Int. Real Estate Review 10(2), 42–65 (2007)

    Google Scholar 

  4. Kontrimas, V., Verikas, A.: The mass appraisal of the real estate by computational intelligence. Applied Soft Computing 11(1), 443–448 (2011)

    Article  Google Scholar 

  5. González, M.A.S., Formoso, C.T.: Mass appraisal with genetic fuzzy rule-based systems. Property Management 24(1), 20–30 (2006)

    Article  Google Scholar 

  6. Guan, J., Zurada, J., Levitan, A.S.: An Adaptive Neuro-Fuzzy Inference System Based Approach to Real Estate Property Assessment. Journal of Real Estate Research 30(4), 395–421 (2008)

    Google Scholar 

  7. Król, D., Lasota, T., Nalepa, W., Trawiński, B.: Fuzzy system model to assist with real estate appraisals. In: Okuno, H.G., Ali, M. (eds.) IEA/AIE 2007. LNCS (LNAI), vol. 4570, pp. 260–269. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Król, D., Lasota, T., Trawiński, B., Trawiński, K.: Comparison of mamdani and TSK fuzzy models for real estate appraisal. In: Apolloni, B., Howlett, R.J., Jain, L. (eds.) KES 2007, Part III. LNCS (LNAI), vol. 4694, pp. 1008–1015. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Lasota, T., Telec, Z., Trawiński, B., Trawiński, K.: Exploration of bagging ensembles comprising genetic fuzzy models to assist with real estate appraisals. In: Corchado, E., Yin, H. (eds.) IDEAL 2009. LNCS, vol. 5788, pp. 554–561. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Lasota, T., Telec, Z., Trawiński, B., Trawiński, K.: A multi-agent system to assist with real estate appraisals using bagging ensembles. In: Nguyen, N.T., Kowalczyk, R., Chen, S.-M. (eds.) ICCCI 2009. LNCS, vol. 5796, pp. 813–824. Springer, Heidelberg (2009)

    Google Scholar 

  11. Krzystanek, M., Lasota, T., Telec, Z., Trawiński, B.: Analysis of bagging ensembles of fuzzy models for premises valuation. In: Nguyen, N.T., Le, M.T., Świątek, J. (eds.) Intelligent Information and Database Systems. LNCS, vol. 5991, pp. 330–339. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Lasota, T., Telec, Z., Trawiński, G., Trawiński, B.: Empirical comparison of resampling methods using genetic fuzzy systems for a regression problem. In: Yin, H., Wang, W., Rayward-Smith, V. (eds.) IDEAL 2011. LNCS, vol. 6936, pp. 17–24. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Lasota, T., Telec, Z., Trawiński, B., Trawiński, K.: Investigation of the eTS Evolving Fuzzy Systems Applied to Real Estate Appraisal. Journal of Multiple-Valued Logic and Soft Computing 17(2–3), 229–253 (2011)

    Google Scholar 

  14. Lughofer, E., Trawiński, B., Trawiński, K., Kempa, O., Lasota, T.: On Employing Fuzzy Modeling Algorithms for the Valuation of Residential Premises. Information Sciences 181, 5123–5142 (2011)

    Article  Google Scholar 

  15. Trawiński, B.: Evolutionary Fuzzy System Ensemble Approach to Model Real Estate Market based on Data Stream Exploration. Journal of Universal Computer Science 19(4), 539–562 (2013)

    Google Scholar 

  16. Telec, Z., Trawiński, B., Lasota, T., Trawiński, G.: Evaluation of neural network ensemble approach to predict from a data stream. In: Hwang, D., Jung, J.J., Nguyen, N.-T. (eds.) ICCCI 2014. LNCS, vol. 8733, pp. 472–482. Springer, Heidelberg (2014)

    Google Scholar 

  17. Angelov, P., Filev, D.: An approach to online identification of Takagi-Sugeno fuzzy models. IEEE Trans. on Systems, Man and Cybernetics, part B 34(1), 484–498 (2004)

    Article  Google Scholar 

  18. Angelov, P., Filev, D.: Simpl_eTS: a simplified method for learning evolving Takagi-Sugeno fuzzy models. In: The 2005 IEEE International Conference on Fuzzy Systems FUZZ-IEEE, Reno, Las Vegas, USA, 22–25 May 2005, pp. 1068–1073 (2005)

    Google Scholar 

  19. Victor, J., Dourado, A.: Evolving Takagi-Sugeno Fuzzy Models. Technical Report, CISUC (2003). http://cisuc.dei.uc.pt/acg/view_pub.php?id_p=760

  20. Angelov, P., Victor, J., Dourado, A., Filev, D.: On-line evolution of Takagi-Sugeno fuzzy models. In: Proceedings of the 2nd IFAC Workshop on Advanced Fuzzy/Neural Control (AFNC 2004), Oulu, Finland (2004)

    Google Scholar 

  21. Lughofer, E., Klement, E.P.: FLEXFIS: a variant for incremental learning of Takagi-Sugeno fuzzy systems. In: Proc. of FUZZ-IEEE 2005, Reno, USA, pp. 915–920 (2005)

    Google Scholar 

  22. Lughofer, E.: FLEXFIS: A robust incremental learning approach for evolving TS fuzzy models. IEEE Transactions on Fuzzy Systems 16(6), 1393–1410 (2008)

    Article  Google Scholar 

  23. Telec, Z., Trawiński, B., Lasota, T., Trawiński, K.: Comparison of evolving fuzzy systems with an ensemble approach to predict from a data stream. In: Bǎdicǎ, C., Nguyen, N.T., Brezovan, M. (eds.) ICCCI 2013. LNCS, vol. 8083, pp. 377–387. Springer, Heidelberg (2013)

    Google Scholar 

  24. Telec, Z., Trawiński, B., Lasota, T., Trawiński, G.: Evaluation of neural network ensemble approach to predict from a data stream. In: Hwang, D., Jung, J.J., Nguyen, N.-T. (eds.) ICCCI 2014. LNCS, vol. 8733, pp. 472–482. Springer, Heidelberg (2014)

    Google Scholar 

  25. Lughofer, E.: Evolving Fuzzy Systems – Methodologies, Advanced Concepts and Applications. Studies in Fuzziness and Soft Computing, vol. 266. Springer Verlag, Heidelberg (2011)

    Book  MATH  Google Scholar 

  26. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  27. García, S., Herrera, F.: An Extension on “Statistical Comparisons of Classifiers over Multiple Data Sets” for all Pairwise Comparisons. Journal of Machine Learning Research 9, 2677–2694 (2008)

    MATH  Google Scholar 

  28. Trawiński, B., Smętek, M., Telec, Z., Lasota, T.: Nonparametric Statistical Analysis for Multiple Comparison of Machine Learning Regression Algorithms. International Journal of Applied Mathematics and Computer Science 22(4), 867–881 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdan Trawiński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Grześlowski, M., Telec, Z., Trawiński, B., Lasota, T., Trawiński, K. (2015). Application of Evolving Fuzzy Systems to Construct Real Estate Prediction Models. In: Núñez, M., Nguyen, N., Camacho, D., Trawiński, B. (eds) Computational Collective Intelligence. Lecture Notes in Computer Science(), vol 9330. Springer, Cham. https://doi.org/10.1007/978-3-319-24306-1_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24306-1_59

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24305-4

  • Online ISBN: 978-3-319-24306-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics