Skip to main content

A Sequent Calculus for Preferential Conditional Logic Based on Neighbourhood Semantics

  • Conference paper
  • First Online:
Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX 2015)

Abstract

The basic preferential conditional logic PCL, initially proposed by Burgess, finds an interest in the formalisation of both counterfactual and plausible reasoning, since it is at the same time more general than Lewis’ systems for counterfactuals and it contains as a fragment the KLM preferential logic P for default reasoning. This logic is characterised by Kripke models equipped with a ternary relational semantics that represents a comparative similarity/normality assessment between worlds, relativised to each world. It is first shown that its semantics can be equivalently specified in terms of neighbourhood models. On the basis of this alternative semantics, a new labelled calculus is given that makes use of both world and neighbourhood labels. It is shown that the calculus enjoys syntactic cut elimination and that, by adding suitable termination conditions, it provides a decision procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alenda, R., Olivetti, N., Pozzato, G.L.: Nested sequent calculi for normal conditional logics. J. Logic Computation (2013) (published online)

    Google Scholar 

  2. Burgess, J.: Quick completeness proofs for some logics of conditionals. Notre Dame Journal of Formal Logic 22, 76–84 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chellas, B.F.: Basic conditional logic. J. of Philosophical Logic 4, 133–153 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dyckhoff, R., Negri, S.: Proof analysis in intermediate logics. Archive for Mathematical Logic 51, 71–92 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Garg, G., Genovese, V., Negri, S.: Countermodels from sequent calculi in multi-modal logics. In: LICS 2012, pp. 315–324 (2012)

    Google Scholar 

  6. Giordano, L., Gliozzi, V., Olivetti, N., Schwind, C.: Tableau calculus for preference-based conditional logics: Pcl and its extensions. ACM Trans. Comput. Logic 10(3) (2009)

    Google Scholar 

  7. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Analytic tableaux calculi for KLM logics of nonmonotonic reasoning. ACM Trans. Comput. Logic 10(3), 1–47 (2009)

    MathSciNet  MATH  Google Scholar 

  8. Friedman, N., Joseph, Y., Halpern, J.: On the complexity of conditional logics. In: KR 1994, pp. 202–213 (1994)

    Google Scholar 

  9. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence 44(1-2), 167–207 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lellmann, B., Pattinson, D.: Sequent systems for lewis’ conditional logics. In: del Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS, vol. 7519, pp. 320–332. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Lewis, D.: Counterfactuals. Blackwell (1973)

    Google Scholar 

  12. Marti, J., Pinosio, R.: Topological semantics for conditionals. In: Dančák, M., Punčochář, V. (eds.) The Logica Yearbook 2013. College Publications (2014)

    Google Scholar 

  13. Negri, S.: Proof analysis in modal logic. J. of Philosophical Logic 34, 507–544 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Negri, S.: Proofs and countermodels in non-classical logics. Logica Universalis 8, 25–60 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Negri, S., von Plato, J.: Proof Analysis. Cambridge University Press (2011)

    Google Scholar 

  16. Negri, S., Sbardolini, G.: Proof analysis for Lewis counterfactuals (submitted) (2014), http://www.helsinki.fi/~negri/PALC.pdf

  17. Nute, D.: Topics in Conditional Logic. Dordrecht, Reidel (1980)

    Book  MATH  Google Scholar 

  18. Olivetti, N., Pozzato, G.L., Schwind, C.: A Sequent Calculus and a Theorem Prover for Standard Conditional Logics. ACM Trans. Comput. Logic 8(4), 1–51 (2007)

    Article  MathSciNet  Google Scholar 

  19. Pattinson, D., Schröder, L.: Generic modal cut elimination applied to conditional logics. Logical Methods in Computer Science 7(1) (2011)

    Google Scholar 

  20. Pollock, J.: A refined theory of counterfactuals. Journal of Philosophical Logic 10, 239–266 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  21. Schröder, L., Pattinson, D., Hausmann, D.: Optimal tableaux for conditional logics with cautious monotonicity. In: ECAI 2010, pp. 707–712 (2010)

    Google Scholar 

  22. Stalnaker, R.: A theory of conditionals. In: Rescher, N. (ed.) Studies in Logical Theory, Oxford, pp. 98–112 (1968)

    Google Scholar 

  23. Stalnaker, R., Thomason, R.H.: A semantic analysis of conditional logic. Theoria 36, 23–42 (1970)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Negri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Negri, S., Olivetti, N. (2015). A Sequent Calculus for Preferential Conditional Logic Based on Neighbourhood Semantics. In: De Nivelle, H. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2015. Lecture Notes in Computer Science(), vol 9323. Springer, Cham. https://doi.org/10.1007/978-3-319-24312-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24312-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24311-5

  • Online ISBN: 978-3-319-24312-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics