Abstract
In the last years, systems and computational biology focused their efforts in uncovering the causal relationships among the observable perturbations of gene regulatory networks and human diseases. This problem becomes even more challenging when network models and algorithms have to take into account slightly significant effects, caused by often peripheral or unknown genes that cooperatively cause the observed diseased phenotype. Many solutions, from community and pathway analysis to information flow simulation, have been proposed, with the aim of reproducing biological regulatory networks and cascades, directly from empirical data as gene expression microarray data. In this contribute, we propose a methodology to evaluate the most important shortest paths between differentially expressed genes in biological interaction networks, with absolutely no need of user-defined parameters or heuristic rules, enabling a free-of-bias discovery and overcoming common issues affecting the most recent network-based algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barabási, A.L., Gulbahce, N., Loscalzo, J.: Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12(1), 56–68 (2011). doi:10.1038/nrg2918.
Wang, X., Gulbahce, N., Yu, H.: Network-based methods for human disease gene prediction. Brief. Funct. Genomics 10(5), 280–293 (2011). doi:10.1093/bfgp
Cho, D.Y., Kim, Y.A., Przytycka, T.: Chapter 5: Network biology approach to complex diseases. PLoS Comput. Biol. 8(12), e1002820 (2012). doi:10.1371/journal.pcbi.1002820
Shih, Y.K., Parthasarathy, S.: A single source k-shortest paths algorithm to infer regulatory pathways in a gene network. Bioinformatics 28(12), i49–i58 (2012). doi:10.1093/bioinformatics
Stojmirović, A., Yu, Y. I.: Probe: analyzing information flow in protein networks. Bioinformatics 25(18), 2447–2449 (2009). doi:10.1093/bioinformatics
Gene Ontology Consortium, Gene Ontology annotations and resources. Nucleic Acids Research 41(D1), D530–D535 (2013)
Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y., Hattori, M.: The KEGG resource for deciphering the genome. Nucleic Acids Res. 32(database issue), D277–D280 (2004)
Pepe, D., Grassi, M.: Investigating perturbed pathway modules from gene expression data via structural equation models. BMC Bioinformatics 15(1), 132 (2014)
Bollen, K.A.: Structural equations with latent variables. Wiley, New York (1989)
Tarca, A.L., Draghici, S., Khatri, P., Hassan, S., Mital, P., Kim, J., Kim, C., Kusanovic, J.P., Romero, R.: A novel signaling pathway impact analysis for microarray experiments. Bioinformatics 25, 75–82 (2009)
R Development Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (2012). http://www.R-project.org/
Zhang, J.D., Wiemann, S.: KEGGgraph: a graph approach to KEGG PATHWAY in R and Bioconductor. Bioinformatics 25(11), 1470–1471 (2009)
Csardi, G., Nepusz, T.: The igraph software package for complex network research. Inter Journal, Complex Systems 1695 (2006). http://igraph.sf.net
Konishi, S., Kitagawa, G.: Bayesian information criteria. Information Criteria and Statistical Modeling, 211–237 (2008)
Yu, G., Wang, L.G., Han, Y., He, Q.Y.: clusterProfiler: an R package for comparing biological themes among gene clusters. Omics: A Journal of Integrative Biology 16(5), 284–287 (2012)
Hu, L.T., Bentler, P.M.: Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal 6(1), 1–55 (1999)
Schäfer, J., Strimmer, K.: A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Statistical Applications in Genetics and Molecular Biology 4(1) (2005)
Barrett, T., Wilhite, S.E., Ledoux, P., Evangelista, C., Kim, I.F., Tomashevsky, M., Marshall, K.A., Phillippy, K.H., Sherman, P.M., Holko, M., Yefanov, A., Lee, H., Zhang, N., Robertson, C.L., Serova, N., Davis, S., Soboleva, A.: NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids Res. 41(database issue), D991–D995 (2013)
Arijs, I., Li, K., Toedter, G., Quintens, R., et al.: Mucosal gene signatures to predict response to infliximab in patients with ulcerative colitis. Gut 58(12), 1612–1619 (2009)
Autschbach, F., Giese, T., Gassler, N., Sido, B., Heuschen, G., Heuschen, U., Meuer, S.C.: Cytokine/chemokine messenger-RNA expression profiles in ulcerative colitis and Crohn’s disease. Virchows Archiv 441(5), 500–513 (2002)
Rutgeerts, P., Sandborn, W.J., Feagan, B.G., Reinisch, W., Olson, A., Johanns, J., Colombel, J.F.: Infliximab for induction and maintenance therapy for ulcerative colitis. New England Journal of Medicine 353(23), 2462–2476 (2005)
Sina, C., Gavrilova, O., Förster, M., Till, A., Derer, S., Hildebrand, F., Rosenstiel, P.: G protein-coupled receptor 43 is essential for neutrophil recruitment during intestinal inflammation. The Journal of Immunology 183(11), 7514–7522 (2009)
Hartwell, L.H., Hopfield, J.J., Leibler, S., Murray, A.W.: From molecular to modular cell biology. Nature 402, C47–C52 (1999)
Pepe, D., Grassi, M.: Pathway Composite Variables: A Useful Tool for the Interpretation of Biological Pathways in the Analysis of Gene Expression Data. Studies in theoretical and Applied statistics. Springer (2014)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Pepe, D., Palluzzi, F., Grassi, M. (2015). Sem Best Shortest Paths for the Characterization of Differentially Expressed Genes. In: DI Serio, C., Liò, P., Nonis, A., Tagliaferri, R. (eds) Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2014. Lecture Notes in Computer Science(), vol 8623. Springer, Cham. https://doi.org/10.1007/978-3-319-24462-4_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-24462-4_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24461-7
Online ISBN: 978-3-319-24462-4
eBook Packages: Computer ScienceComputer Science (R0)