Abstract
Modeling and simulation techniques have been used extensively to study the complexities of brain circuits. Simulations of bio-realistic networks consisting of large number of neurons require massive computational power when they are designed to provide real-time responses in millisecond scale. A network model of cerebellar granular layer was developed and simulated here on Graphic Processing Units (GPU) which delivered a high compute capacity at low cost. We used a mathematical model namely, Adaptive Exponential leaky integrate-and-fire (AdEx) equations to model the different types of neurons in the cerebellum. The hypothesis relating spatiotemporal information processing in the input layer of the cerebellum and its relations to sparse activation of cell clusters was evaluated. The main goal of this paper was to understand the computational efficiency and scalability issues while implementing a large-scale microcircuit consisting of millions of neurons and synapses. The results suggest efficient scale-up based on pleasantly parallel modes of operations allows simulations of large-scale spiking network models for cerebellum-like network circuits.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hines, M.L., Carnevale, N.T.: The NEURON simulation environment. Neural Comput. 9(6), 1179–1209 (1997)
Bower, J.M.: GEneral NEural SImulation System (2003)
Hines, M.L., Carnevale, N.T.: Translating network models to parallel hardware in NEURON, 169(2) (2008)
Goddard, N.H., Hood, G.: Large Scale simulation using parallel GENESIS. In: The Book of Genesis, pp. 349–380 (1996)
Plesser, H.E., Eppler, J.M., Morrison, A., Diesmann, M., Gewaltig, M.-O.: Efficient parallel simulation of large-scale neuronal networks on clusters of multiprocessor computers. In: Kermarrec, A.-M., Bougé, L., Priol, T. (eds.) Euro-Par 2007. LNCS, vol. 4641, pp. 672–681. Springer, Heidelberg (2007)
Delorme, A., Thorpe, S.J.: SpikeNET: An Event-driven Simulation Package for Modeling Large Networks of Spiking Neurons. Netw. Comput. Neural Syst. 14, 613–627 (2003)
Bernhard, F.: Spiking Neurons on GPUs (2005)
Nageswaran, J.M., Dutt, N., Krichmar, J.L., Nicolau, A., Veidenbaum, A.: Efficient simulation of large-scale Spiking Neural Networks using CUDA graphics processors. In: 2009 Int. Jt. Conf. Neural Networks, pp. 2145–2152, June 2009
Igarashi, J., Shouno, O., Fukai, T., Tsujino, H.: Real-time simulation of a spiking neural network model of the basal ganglia circuitry using general purpose computing on graphics processing units. Neural Netw. 24(9), 950–960 (2011)
Yamazaki, T., Igarashi, J.: Realtime cerebellum: A large-scale spiking network model of the cerebellum that runs in realtime using a graphics processing unit. Neural Netw., February 2013
D’Angelo, E.: Neural circuits of the cerebellum: hypothesis for function. J. Integr. Neurosci. 10(3), 317–352 (2011)
Medini, C., Nair, B., D’Angelo, E., Naldi, G., Diwakar, S.: Modeling spike-train processing in the cerebellum granular layer and changes in plasticity reveal single neuron effects in neural ensembles. Comput. Intell. Neurosci. 2012, 359529 (2012)
Nieus, T., Sola, E., Mapelli, J., Saftenku, E., Rossi, P., D’Angelo, E.: LTP regulates burst initiation and frequency at mossy fiber-granule cell synapses of rat cerebellum: experimental observations and theoretical predictions. J. Neurophysiol. 95(2), 686–699 (2006)
Diwakar, S., Magistretti, J., Goldfarb, M., Naldi, G., D’Angelo, E.: Axonal Na+ channels ensure fast spike activation and back-propagation in cerebellar granule cells. J. Neurophysiol. 101(2), 519–532 (2009)
Solinas, S., Forti, L., Cesana, E., Mapelli, J., De Schutter, E., D’Angelo, E.: Computational reconstruction of pacemaking and intrinsic electroresponsiveness in cerebellar golgi cells, vol. 1, December 2007
Solinas, S., Nieus, T., D’Angelo, E.: A realistic large-scale model of the cerebellum granular layer predicts circuit spatio-temporal filtering properties. Front. Cell. Neurosci. 4, 12 (2010)
Brette, R., Gerstner, W.: Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J. Neurophysiol. 94(5), 3637–3642 (2005)
Naud, R., Marcille, N., Clopath, C., Gerstner, W.: Firing patterns in the adaptive exponential integrate-and-fire model. Biol. Cybern. 99(4–5), 335–347 (2008)
Bengtsson, F., Jörntell, H.: Sensory transmission in cerebellar granule cells relies on similarly coded mossy fiber inputs. Proc. Natl. Acad. Sci. U.S.A. 106(7), 2389–2394 (2009)
David, J.H., McCormick, A., Wang, Z.: Neurotransmitter Control of Neocortical Neuronal Activity and Excitability. Cereb. Cortex 3(5), 387–398 (1993)
Rossi, D.J., Hamann, M.: Spillover-Mediated Transmission at Inhibitory Synapses Promoted by High Affinity α 6 Subunit GABA A Receptors and Glomerular Geometry. Neuron 20, 783–795 (1998)
Purve, D.: Neuroscience. Sinauer Associates, Inc., Sunderland (2004)
D’Angelo, E., Solinas, S., Mapelli, J., Gandolfi, D., Mapelli, L., Prestori, F.: The cerebellar Golgi cell and spatiotemporal organization of granular layer activity. Front. Neural Circuits 7, 93 (2013)
Solinas, S., Nieus, T., D’Angelo, E., Bower, J.M.: A realistic large-scale model of the cerebellum granular layer predicts circuit spatio-temporal filtering properties, 4, 1–17, May 2010
Forti, L., Cesana, E., Mapelli, J., D’Angelo, E.: Ionic mechanisms of autorhythmic firing in rat cerebellar Golgi cells. J. Physiol. 574(Pt 3), 711–729 (2006)
D’Angelo, E., De Filippi, G., Rossi, P., Taglietti, V., Liu, A., Regehr, W.G., Maejima, T., Wollenweber, P., Teusner, L.U.C., Noebels, J.L., Herlitze, S., Mark, M.D., Brackenbury, W.J., Calhoun, J.D., Chen, C., Miyazaki, H., Nukina, N., Oyama, F., Ranscht, B., Isom, L.L., Filippi, G.D.E.: Ionic Mechanism of Electroresponsiveness in Cerebellar Granule Cells Implicates the Action of a Persistent Sodium Current Ionic Mechanism of Electroresponsiveness in Cerebellar Granule Cells Implicates the Action of a Persistent Sodium Current. J. Neurophysiol., 493–503 (1998)
Mapelli, J., D’Angelo, E.: The spatial organization of long-term synaptic plasticity at the input stage of cerebellum. J. Neurosci. 27(6), 1285–1296 (2007)
Jonathan Mapelli, E.D., Gandolfi, D.: Combinatorial Responses Controlled by Synaptic Inhibition in the Cerebellum Granular Layer. J. Neurophysiol. 103(1), 250–261 (2010)
Hwu, W.W., Kirk, D.B.: Programming Massively Parallel Processors: A Hands-on Approach. Morgan Kaufmann (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Nair, M., Nair, B., Diwakar, S. (2015). GPGPU Implementation of a Spiking Neuronal Circuit Performing Sparse Recoding. In: DI Serio, C., Liò, P., Nonis, A., Tagliaferri, R. (eds) Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2014. Lecture Notes in Computer Science(), vol 8623. Springer, Cham. https://doi.org/10.1007/978-3-319-24462-4_24
Download citation
DOI: https://doi.org/10.1007/978-3-319-24462-4_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24461-7
Online ISBN: 978-3-319-24462-4
eBook Packages: Computer ScienceComputer Science (R0)