Skip to main content

Automatically Discovering Offensive Patterns in Soccer Match Data

  • Conference paper
  • First Online:
Advances in Intelligent Data Analysis XIV (IDA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9385))

Included in the following conference series:

  • 1508 Accesses

Abstract

In recent years, many professional sports clubs have adopted camera-based tracking technology that captures the location of both the players and the ball at a high frequency. Nevertheless, the valuable information that is hidden in these performance data is rarely used in their decision-making process. What is missing are the computational methods to analyze these data in great depth. This paper addresses the task of automatically discovering patterns in offensive strategies in professional soccer matches. To address this task, we propose an inductive logic programming approach that can easily deal with the relational structure of the data. An experimental study shows the utility of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    By cover, we mean that a clause, in combination with BK, can be used to derive that the target predicate T is true for a given example.

References

  1. Bialkowski, A., Lucey, P., Carr, P., Yue, Y., Sridharan, S., Matthews, I.: Identifying team style in soccer using formations learned from spatiotemporal tracking data. In: Proceedings of the Workshop on Spatial and Spatio-Temporal Data Mining, pp. 9–14 (2014)

    Google Scholar 

  2. Cestnik, B.: Estimating probabilities: a crucial task in machine learning. In: Proceedings of the 9th European Conference on Artificial Intelligence, vol. 90, pp. 147–149 (1990)

    Google Scholar 

  3. Džeroski, S., Lavrač, N.: An introduction to inductive logic programming. In: Džeroski, S., Lavrač, N. (eds.) Relational Data Mining, pp. 48–73. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Gyarmati, L., Kwak, H., Rodriguez, P.: Searching for a unique style in soccer (2014). arXiv:1409.0308

  5. Herrera, F., Carmona, C., González, P., del Jesus, M.: An overview on subgroup discovery: foundations and applications. Knowl. Inf. Syst. 29(3), 495–525 (2011)

    Article  Google Scholar 

  6. Knauf, K., Brefeld, U.: Spatio-temporal convolution kernels for clustering trajectories. In: Proceedings of the Workshop on Large-Scale Sports Analytics (2014)

    Google Scholar 

  7. Knobbe, A.J.: Multi-Relational Data Mining. Ph.D. thesis, Utrecht University (2004)

    Google Scholar 

  8. Kralj Novak, P., Lavrač, N., Webb, G.: Supervised descriptive rule discovery: a unifying survey of contrast set, emerging pattern and subgroup mining. J. Mach. Learn. Res. 10, 377–403 (2009)

    MATH  Google Scholar 

  9. Lavrač, N., Džeroski, S., Bratko, I.: Handling imperfect data in inductive logic programming. Adv. Inductive Log. Program. 32, 48–64 (1996)

    Google Scholar 

  10. Lavrač, N., Cestnik, B., Gamberger, D., Flach, P.: Decision support through subgroup discovery: three case studies and the lessons learned. Mach. Learn. 57(1–2), 115–143 (2004)

    Article  MATH  Google Scholar 

  11. Lewis, M.: Moneyball: The Art of Winning an Unfair Game. W. W. Norton & Company, New York (2004)

    Google Scholar 

  12. Lucey, P., Oliver, D., Carr, P., Roth, J., Matthews, I.: Assessing team strategy using spatiotemporal data. In: Proceedings of the 19th International Conference on Knowledge Discovery and Data Mining, pp. 1366–1374 (2013)

    Google Scholar 

  13. Muggleton, S., De Raedt, L.: Inductive logic programming: theory and methods. J. Logic Program. 19, 629–679 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mutschler, C., Ziekow, H., Jerzak, Z.: The DEBS 2013 grand challenge. In: Proceedings of the 7th International Conference on Distributed Event-based Systems, pp. 289–294 (2013)

    Google Scholar 

  15. Op De Beéck, T., Hommersom, A., Van Haaren, J., van der Heijden, M., Davis, J., Lucas, P., Overbeek, L., Nagtegaal, I.: Mining hierarchical pathology data using inductive logic programming. In: Holmes, J.H., Bellazzi, R., Sacchi, L., Peek, N. (eds.) AIME 2015. LNCS, vol. 9105, pp. 76–85. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  16. Opta Sports. http://www.optasports.com. Accessed 24 July 2015

  17. PlayfulVision. http://www.playfulvision.com. Accessed 24 July 2015

  18. Prozone. http://www.prozonesports.com. Accessed 24 July 2015

  19. Srinivasan, A.: The Aleph Manual. Machine Learning at the Computing Laboratory. Oxford University, Oxford (2001)

    Google Scholar 

  20. STATS’ SportVU. http://www.stats.com/sportvu. Accessed 24 July 2015

  21. Vavpetič, A., Lavrač, N.: Semantic subgroup discovery systems and workflows in the SDM-toolkit. Comput. J. 56(3), 304–320 (2013)

    Article  Google Scholar 

  22. Wrobel, S.: An algorithm for multi-relational discovery of subgroups. In: Komorowski, J., Zytkow, J. (eds.) PKDD 1997. LNCS, vol. 1263, pp. 78–87. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

Download references

Acknowledgments

Jan Van Haaren is supported by the Agency for Innovation by Science and Technology (IWT). Vladimir Dzyuba is supported by the Research Foundation Flanders (FWO) by means of the project “Instant Interactive Data Exploration”. Jesse Davis is partially supported by the Research Fund KU Leuven (OT/11/051), EU FP7 Marie Curie Career Integration Grant (#294068) and FWO-Vlaanderen (G.0356.12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Van Haaren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Van Haaren, J., Dzyuba, V., Hannosset, S., Davis, J. (2015). Automatically Discovering Offensive Patterns in Soccer Match Data. In: Fromont, E., De Bie, T., van Leeuwen, M. (eds) Advances in Intelligent Data Analysis XIV. IDA 2015. Lecture Notes in Computer Science(), vol 9385. Springer, Cham. https://doi.org/10.1007/978-3-319-24465-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24465-5_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24464-8

  • Online ISBN: 978-3-319-24465-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics