Skip to main content

Feature Lines for Illustrating Medical Surface Models: Mathematical Background and Survey

  • Conference paper
  • First Online:
Visualization in Medicine and Life Sciences III

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

  • 903 Accesses

Abstract

This paper provides a tutorial and survey for a specific kind of illustrative visualization technique: feature lines. We examine different feature line methods. For this, we provide the differential geometry behind these concepts and adapt this mathematical field to the discrete differential geometry. All discrete differential geometry terms are explained for triangulated surface meshes. These utilities serve as basis for the feature line methods. We provide the reader with all knowledge to re-implement every feature line method. Furthermore, we summarize the methods and suggest a guideline for which kind of surface which feature line algorithm is best suited. Our work is motivated by, but not restricted to, medical and biological surface models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alliez, P., Cohen-Steiner, D., Devillers, O., Lévy, B., Desbrun, M.: Anisotropic polygonal remeshing. In: Proceedings of ACM SIGGRAPH, vol. 22, pp. 485–493 (2003)

    Google Scholar 

  2. Belkin, M., Sun, J., Wang, Y.: Discrete laplace operator on meshed surfaces. In: Proceedings of Symposium on Computational Geometry, pp. 278–287. ACM, New York (2008)

    Google Scholar 

  3. Born, S., Wiebel, A., Friedrich, J., Scheuermann, G., Bartz, D.: Illustrative stream surfaces. IEEE Trans. Vis. Comput. Graph. 16(6), 1329–1338 (2010)

    Article  Google Scholar 

  4. Burns, M., Klawe, J., Rusinkiewicz, S., Finkelstein, A., DeCarlo, D.: Line drawings from volume data. In: Proceedings of ACM SIGGRAPH, vol. 24, no. 3, pp. 512–518 (2005)

    Google Scholar 

  5. Cazals, F., Pouget, M.: Estimating differential quantities using polynomial fitting of osculating jets. In: Proceedings of ACM SIGGRAPH, pp. 177–187 (2003)

    Google Scholar 

  6. Chen, X., Schmitt, F.: Intrinsic surface properties from surface triangulation. In: Proceedings of the European Conference on Computer Vision, pp. 739–743 (1992)

    Google Scholar 

  7. Chu, A., Chan, W.Y., Guo, J., Pang, W.M., Heng, P.A.: Perception-aware depth cueing for illustrative vascular visualization. In: International Conference on BioMedical Engineering and Informatics, vol. 1, pp. 341–346 (2008)

    Google Scholar 

  8. Cohen-Steiner, D., Morvan, J.M.: Restricted delaunay triangulations and normal cycle. In: Proceedings of Symposium on Computational Geometry, pp. 312–321. ACM (2003)

    Google Scholar 

  9. DeCarlo, D., Finkelstein, A., Rusinkiewicz, S., Santella, A.: Suggestive contours for conveying shape. In: Proceedings of ACM SIGGRAPH, vol. 22, pp. 848–855 (2003)

    Google Scholar 

  10. do Carmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice-Hall, Englewood Cliffs (1976)

    Google Scholar 

  11. do Carmo, M.P.: Riemannian Geometry. Birkhäuser, Boston (1992)

    Google Scholar 

  12. Eberly, D.: Ridges in image and data analysis. Computational Imaging and Vision. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  13. Fischer, J., Bartz, D., Straßer, W.: Illustrative display of hidden iso-surface structures. In: Proceedings of IEEE Visualization, pp. 663–670 (2005)

    Google Scholar 

  14. Floater, M.S.: Mean value coordinates. Comput. Aided Geom. Des. 20(1), 19–27 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Girshick, A., Interrante, V., Haker, S., Lemoine, T.: Line direction matters: an argument for the use of principal directions in 3d line drawings. In: Proceedings of the Non-Photorealistic Animation and Rendering, pp. 43–52 (2000)

    Google Scholar 

  16. Glaßer, S., Lawonn, K., Preim, B.: Visualization of 3D cluster results for medical tomographic image data. In: Proceedings of VISIGRAPP/GRAPP, pp. 169–176 (2014)

    Google Scholar 

  17. Goldfeather, J., Interrante, V.: A novel cubic-order algorithm for approximating principal direction vectors. ACM Trans. Graph. 23(1), 45–63 (2004)

    Article  Google Scholar 

  18. Hameiri, E., Shimshoni, I.: Estimating the principal curvatures and the darboux frame from real 3-d range data. Trans. Syst. Man Cybern. B 33(4), 626–637 (2003)

    Article  Google Scholar 

  19. Hansen, C., Wieferich, J., Ritter, F., Rieder, C., Peitgen, H.O.: Illustrative visualization of 3d planning models for augmented reality in liver surgery. Comput. Assist. Radiol. Surg. 5(2), 133–141 (2010)

    Article  Google Scholar 

  20. Hertzmann, A., Zorin, D.: Illustrating smooth surfaces. In: Proceedings of ACM SIGGRAPH, pp. 517–526 (2000)

    Google Scholar 

  21. Hildebrandt, K., Polthier, K., Wardetzky, M.: On the convergence of metric and geometric properties of polyhedral surfaces. Geom. Dedicata 123, 89–112 (2005a)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hildebrandt, K., Polthier, K., Wardetzky, M.: Smooth feature lines on surface meshes. In: Proceedings of the Third Eurographics Symposium on Geometry Processing, Vienna, vol. 255, pp. 85–90 (2005b)

    Google Scholar 

  23. Interrante, V., Fuchs, H., Pizer, S.: Enhancing transparent skin surfaces with ridge and valley lines. In: Proceedings of IEEE Visualization, pp. 52–59 (1995)

    Google Scholar 

  24. Jainek, W.M., Born, S., Bartz, D., Straer, W., Fischer, J.: Illustrative hybrid visualization and exploration of anatomical and functional brain data. Comput. Graph. Forum 27(3), 855–862 (2008)

    Article  Google Scholar 

  25. Judd, T., Durand, F., Adelson, E.: Apparent ridges for line drawing. In: Proceedings of ACM SIGGRAPH, p. 19 (2007)

    Google Scholar 

  26. Kolomenkin, M., Shimshoni, I., Tal, A.: Demarcating curves for shape illustration. In: Proceedings of ACM SIGGRAPH Asia, pp. 157:1–157:9 (2008)

    Google Scholar 

  27. Krüger, A., Tietjen, C., Hintze, J., Preim, B., Hertel, I., Strauß, G.: Analysis and exploration of 3d visualization for neck dissection planning. Comput. Assist. Radiol. Surg. 1281(0), 497–503 (2005)

    Google Scholar 

  28. Kühnel, W.: Differential Geometry: Curves - Surfaces - Manifolds. Student Mathematical Library. American Mathematical Society, Providence (2006)

    MATH  Google Scholar 

  29. Lawonn, K., Gasteiger, R., Preim, B.: Qualitative evaluation of feature lines on anatomical surfaces. In: Bildverarbeitung für die Medizin (BVM), pp. 187–192 (2013)

    Google Scholar 

  30. Lawonn, K., Mönch, T., Preim, B.: Streamlines for illustrative real-time rendering. Comput. Graph. Forum 33(3), 321–330 (2013)

    Article  Google Scholar 

  31. MacNeal, R.: The solution of partial differential equations by means of electrical networks. Ph.D Thesis. California Institute of Technology (1949)

    Google Scholar 

  32. Marr, D.: Early processing of visual information. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 275(942), 483–519 (1976)

    Article  Google Scholar 

  33. Meyer, M., Desbrun, M., Schröder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. In: Proceedings of Visuality & Mathematics, pp. 35–57 (2002)

    Google Scholar 

  34. Muthukrishnan, R., Radha, M.: Edge detection techniques for image segmentation. Int. J. Comput. Sci. Inf. Technol. 3(6) (2011)

    Google Scholar 

  35. Nadernejad, E., Sharifzadeh, S., Hassanpour, H.: Edge detection techniques: Evaluations and comparisons. Appl. Math. Sci. 2(31), 1507–1520 (2008)

    MathSciNet  MATH  Google Scholar 

  36. Oeltze, S., Hennemuth, A., Glaßer, S., Kühnel, C., Preim, B.: Glyph-based visualization of myocardial perfusion data and enhancement with contractility and viability information. In: Visual Computing for Biology and Medicine, pp. 11–20 (2008)

    Google Scholar 

  37. Ohtake, Y., Belyaev, A., Seidel, H.-P.: Ridge-valley lines on meshes via implicit surface fitting. ACM SIGGRAPH 23, 609–612 (2004)

    Article  Google Scholar 

  38. Page, D.L., Koschan, A., Sun, Y., Paik, J., Abidi, M.A.: Robust crease detection and curvature estimation of piecewise smooth surfaces from triangle mesh approximations using normal voting. In: Computer Vision and Pattern Recognition, pp. 162–167 (2001)

    Google Scholar 

  39. Praun, E., Hoppe, H., Webb, M., Finkelstein, A.: Real-time hatching. In: Proceedings of ACM SIGGRAPH, pp. 579–584 (2001)

    Google Scholar 

  40. Preim, B., Botha, C.: Visual Computing for Medicine, 2nd edn. Morgan Kaufmann, Amsterdam (2013)

    Google Scholar 

  41. Ritter, F., Hansen, C., Dicken, V., Konrad, O., Preim, B., Peitgen, H.O.: Real-time illustration of vascular structures. IEEE Trans. Vis. Comput. Graph. 12(5), 877–884 (2006)

    Article  Google Scholar 

  42. Rusinkiewicz, S.: Estimating curvatures and their derivatives on triangle meshes. In: Symposium on 3D Data Processing, Visualization, and Transmission (2004)

    Google Scholar 

  43. Rusinkiewicz, S., Cole, F., DeCarlo, D., Finkelstein, A.: Line drawings from 3d models. In: Proceedings of ACM SIGGRAPH, pp. 39:1–39:356 (2008)

    Google Scholar 

  44. Senthilkumaran, N., Rajesh, R.: Edge detection techniques for image segmentation – a survey of soft computing approaches. Int. J. Recent Trends Eng. 1(2), (2009)

    Google Scholar 

  45. Sorkine, O.: Laplacian Mesh Processing, pp. 53–70. Eurographics Association, Dublin (2005). Eurographics 05 STAR

    Google Scholar 

  46. Stylianou, G.: A feature based method for rigid registration of anatomical surfaces. In: Geometric Modeling for Scientific Visualization, Mathematics and Visualization, pp. 139–149. Springer, Berlin/Heidelberg (2004)

    Google Scholar 

  47. Svetachov, P., Everts, M.H., Isenberg, T.: DTI in context: illustrating brain fiber tracts in situ. Comput. Graph. Forum 29(3), 1023–1032 (2010)

    Article  Google Scholar 

  48. Taubin, G.: Estimating the tensor of curvature of a surface from a polyhedral approximation. In: Proceedings of International Conference on Computer Vision, pp. 902–907. IEEE Computer Society (1995)

    Google Scholar 

  49. Taubin, G.: A signal processing approach to fair surface design. In: Proceedings of ACM SIGGRAPH, pp. 351–358 (1995)

    Google Scholar 

  50. Tietjen, C., Isenberg, T., Preim, B.: Combining silhouettes, surface, and volume rendering for surgery education and planning. In: The Eurographics Conference on Visualization, pp. 303–310 (2005)

    Google Scholar 

  51. Treavett, S.M.F., Chen, M.: Pen-and-ink rendering in volume visualisation. In: Ertl, T., Hamann, B., Varshney, A. (eds.) Proceedings of IEEE Visualization, pp. 203–210 (2000)

    Google Scholar 

  52. Wardetzky, M., Mathur, S., Kälberer, F., Grinspun, E.: Discrete laplace operators: no free lunch. In: Symposium on Geometry Processing, pp. 33–37. Eurographics Association (2007)

    Google Scholar 

  53. Webb, M., Praun, E., Finkelstein, A., Hoppe, H.: Fine tone control in hardware hatching. In: Non-Photorealistic Animation and Rendering, pp. 53–58 (2002)

    Google Scholar 

  54. Xie, X., He, Y., Tian, F., Seah, H.S., Gu, X., Qin, H.: An effective illustrative visualization framework based on photic extremum lines (PELS). IEEE Trans. Vis. Comput. Graph. 13, 1328–1335 (2007)

    Article  Google Scholar 

  55. Yoshizawa, S., Belyaev, A., Seidel, H.-P.: Fast and robust detection of crest lines on meshes. In: Proceedings of the 2005 ACM Symposium on Solid and Physical Modeling, Cambridge, pp. 227–232 (2005)

    Google Scholar 

  56. Zander, J., Isenberg, T., Schlechtweg, S., Strothotte, T.: High quality hatching. Comput. Graph. Forum 23(3), 421–430 (2004)

    Article  Google Scholar 

  57. Zhang, L., He, Y., Seah, H.S.: Real-time computation of photic extremum lines (PELs). Vis. Comput. 26(6–8), 399–407 (2010)

    Article  Google Scholar 

  58. Zhang, L., He, Y., Xia, J., Xie, X., Chen, W.: Real-time shape illustration using laplacian lines. IEEE Trans. Vis. Comput. Graph. 17, 993–1006 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Lawonn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Lawonn, K., Preim, B. (2016). Feature Lines for Illustrating Medical Surface Models: Mathematical Background and Survey. In: Linsen, L., Hamann, B., Hege, HC. (eds) Visualization in Medicine and Life Sciences III. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-24523-2_5

Download citation

Publish with us

Policies and ethics