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Abstract. Diffusion-weighted imaging (DWI) allows to probe tissue mi-
crostructure non-invasively and study healthy and diseased white matter
(WM) in vivo. Yet, less research has focussed on modelling grey matter
(GM), cerebrospinal fluid (CSF) and other tissues. Here, we introduce a
fully data-driven approach to spherical deconvolution, based on convex
non-negative matrix factorization. Our approach decomposes multi-shell
DWI data, represented in the basis of spherical harmonics, into tissue-
specific orientation distribution functions and corresponding response
functions. We evaluate the proposed method in phantom simulations and
in vivo brain images, and demonstrate its ability to reconstruct WM, GM
and CSF, unsupervised and solely relying on DWI.

1 Introduction

Diffusion-weighted imaging (DWI) is a non-invasive MRI modality that allows to
probe tissue microstructure in vivo by measuring its hinderance to the diffusion
process of water [1]. DWI has found applications in neuroscientific research into
brain organization and disease processes, as well as clinical applications such as
diagnosing acute stroke and neurosurgical planning based on tractography.

Since it was recognised that diffusion anisotropy is indicative of axonal struc-
ture in the nervous system [2], research has largely focussed on reconstructing
fibre orientation and connectivity in white matter (WM). On the one hand, a
myriad of biophysical models have been introduced [3], which aim to estimate
microstructure parameters such as axon diameter or dispersion. On the other
hand, spherical deconvolution (SD) approaches estimate the fibre orientation
distribution function (ODF), given a fibre response function (RF) that is typi-
cally estimated from and hence adapted to the data at hand [4]. However, this
calibration of the RF may severely impact the reconstructed fibre ODF [5, 6].
Additionally, the presence of partial volume effects (PVE), originating from ad-
jacent grey matter (GM) and cerebrospinal fluid (CSF), has been shown to
affect SD [7]. Hence, the question arises how to accurately represent both WM
and other tissues, as well as pathology.
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Recent work has extended SD to multiple tissue types [8]. Yet, for calibrating
the tissue response functions they rely on a prior tissue segmentation obtained
from a T1-weighted MR image, which may not always be available or may not
be well aligned to the DWI data, e.g., due to EPI distortion [9]. In this paper,
we present a more general take on spherical deconvolution, formulated as convex
non-negative matrix factorization (NMF) [10] in the basis of spherical harmonics,
in which tissue-specific RFs and ODFs are estimated simultaneously from the
DWI data itself, without the need for external input.

NMF has previously been applied to diffusion tensor imaging (DTI) data [11],
which we now generalize to (multi-shell) high angular resolution imaging
(HARDI). The dictionary learning approach introduced in [12] is also based on
NMF but assumes sparsity of the reconstructed ODFs. Here, we do not impose
any constraints on the ODFs except for non-negativity. Instead, we constrain
the tissue RFs to be convex combinations of the data voxels. As such, physical
plausibility of the tissue responses is ensured in a purely data-driven manner.

We evaluate accuracy of the estimated tissue RFs and ODFs in simulations on
in silico data, and demonstrate the method on real brain data. In addition, we
investigate the required number of NMF sources in healthy subjects and in the
presence of pathology, and show that they can be associated to known anatomy.

2 Method

Assuming linear partial volume effect (PVE), the diffusion signal in each voxel,
for gradient direction g and given b-value, Sb(g), can be decomposed into N tis-
sues, each of which are characterized by an axially symmetric response function
Ht,b(θ). Each tissue t then contributes to the signal in a voxel as the spherical
convolution of its RF and an orientation distribution Ft(θ, φ), i.e.,

Sb(g) ≈
N∑

t=1

(Ht,b ∗ Ft)(g) .

When Sb and Ft are represented in the basis of real, symmetric spherical harmon-
ics (SH) of maximum order �max, and the response functions Ht,b are represented
as zonal harmonics (phase m = 0), the convolution reduces to a multiplication of

the coefficients of corresponding order �, i.e., sb(�,m) =
∑

t

√
4π

2�+1ht,b(�) ft(�,m)

with � ∈ {0, 2, . . . , �max} and m ∈ [−�, �] [4, 8]. We then structure the SH coeffi-
cients of all voxels v and shells b in the tensor equation

S̄ ≈ H̄ � F̄
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where H̄ contains the RF coefficients and F̄ the coefficients of the tissue ODFs.
The operator � is used to denote spherical convolution in the SH basis, and
corresponds to the matrix product of every slice F·,·,(�,m) with slice H·,·,� of
corresponding order �. For all voxels and tissues, the coefficients fv,t,· are con-
strained to represent non-negative functions. Note that the � = 0 coefficients of
F̄ represent the isotropic volume fraction or density of each tissue.

In this work, we do not assume that the response functions H̄ are known a
priori. As such, expression (1) becomes a blind source separation problem in the
form of non-negative matrix factorization (NMF) [10], in which a data matrix is
decomposed as the product of a source matrix and a non-negative weight matrix.
In this case, the unknown sources are the tissue-specific response functions, the
weights are the tissue ODFs, and we aim to find

H̄�, F̄ � = arg min
(H̄,F̄ )

‖S̄ − H̄ � F̄‖2F , s.t. Afv,t,· ≥ 0 , (2)

where A is a matrix that evaluates the SH basis across a dense set of directions
and ensures non-negativity of the tissue ODFs. In addition, we impose that all
sources Ht are a convex combination of the measured signal after reorientation.
To achieve this, we compute an auxiliary tensor Z̄ that contains, for each voxel v,
the coefficients of the best fitting zonal harmonics to the data Sv across all
possible orientations of the symmetry axis. The tissue RFs are then represented
as ht,b,� = z·,b,� ·wt,·, with voxel weights W ≥ 0 and ‖wt,·‖1 = 1.

The resulting convex non-negative factorization problem is solved by alter-
natingly solving for F̄ and W , starting from an initialization for H̄ which we
obtain from k-means clustering in the space of best-fitting zonal harmonics Z̄. We
solve (2) for the ODFs F̄ in each voxel by unfolding all tensors along the dimen-
sions of shells and SH coefficients. This results in the constrained least-squares
expression identical to multi-shell multi-tissue spherical deconvolution [8], which
is solved with quadratic programming (QP) given the non-negativity constraints
on F̄ . Subsequently, (2) can be solved for H̄ by unfolding across all voxels and
SH coefficients. Imposing the convexity constraint furthermore requires unfold-
ing across shells to solve directly for the weights W in one global QP problem.
This procedure is repeated for 10 iterations, which we found to be sufficient for
convergence (the relative decrease in residual was consistently < 1%).

We implemented the factorization method in Python, using a custom SH basis
implementation and CVXOPT (cvxopt.org) for optimizing the QP problems.

3 Experiments and Results

3.1 Monte-Carlo Simulations

We simulated a phantom dataset with the geometry shown in Fig. 1. The phan-
tom contains 3 tissue classes, mimicking WM, GM and CSF regions, each sim-
ulated by a ground-truth RF that was originally estimated from in vivo data
according to the procedure advised in [8]. The WM ODF is represented at
�max = 10. GM and CSF are modelled isotropically (�max = 0). The original

cvxopt.org
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Fig. 1. (A) Ground truth geometry of simulated WM (blue), GM (green), CSF (red),
and WM-GM PVE (cyan). (B-D) Estimated ODFs of 3 components at SNR 20.

Fig. 2. Measures of accuracy and precision of the proposed method on the simulated
phantom. Top row: Response function accuracy as a function of signal-to-noise ratio
(SNR). Bottom row: ODF accuracy as a function of SNR, restricted to the isotropic
volume fraction (�max = 0) in case of components 2 and 3. The dashed lines represent
the ODF accuracy in case of direct deconvolution with the ground truth kernels.

phantom was generated at 100 × 100 voxels and subsampled to 20 × 20 voxels
to simulate PVE. Finally, we sampled the signal with the gradient scheme of
the Human Connectome Project [13], and added Rician noise for signal-to-noise
ratios (SNR) ranging from 5 to ∞. At each SNR, 100 noise realizations of the
data were generated.

We applied the proposed method to estimate N = 3 components in the phan-
tom. Accuracy and precision of the RFs and ODFs are measured by the relative
root-mean-square (RMS) error of the amplitude. Results for one noise realization
at SNR 20 are shown in Fig. 1. Component 1 corresponds well with WM and
the fibre directions are nicely recovered. Components 2 and 3 correspond to GM
and CSF. Although the estimated ODFs contain spurious peaks, the isotropic
density (� = 0 coefficient) closely matches the isotropic ground truth. The RF
and ODF accuracy and precision are plotted in Fig. 2 and confirm these obser-
vations. The accuracy of the estimated RFs is good (error < 5% for SNR ≥ 10)
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Fig. 3. Model selection for dataset 1. Plot of the Bayesian information criterion for
varying no. anisotropic components (blue) and one anisotropic and a range of isotropic
components (green), annotated with the volume fractions of the estimated components.

and improves with increasing SNR. The accuracy of the WM ODF and of the
density of GM and CSF is in the same range. Notably, our approach outperforms
direct SD with the ground-truth RFs in the low SNR range (dashed line). We
attribute this to the Rician noise floor, particularly at high b-values, which the
joint RF estimation may be able to model, whereas direct SD can not.

3.2 Results on Human Brain Data

We evaluate our method in data of two neurologically healthy subjects and in
one post-surgery image of a patient who suffered a grade IV glioma in the right
temporal lobe. Dataset 1 was provided by the Human Connectome Project [13].
Dataset 2 and 3 were acquired in house on a Philips Achieva 3T system, using
an isotropic voxel size of 2.5mm, and 10, 25, 40, 75 gradients at b-values 0,
700, 1000, and 2800 s/mm2 respectively. Dataset 2 was corrected for motion, eddy
current, and EPI distortions using reverse-phase encoding in the b0 [9].

In order to keep the computational requirements low, we apply our method in
a random subset of 1000 voxels, which takes about 8min. Afterwards, the ODFs
of the entire dataset are computed as the deconvolution with the estimated RFs.
The estimated RFs were verified to be robust to this subsampling (e.g., the
precision of the WM response on 50 runs is < 5%).

First, we investigate the required number of sources and their maximal SH
order for the healthy human brain. We vary the number of sources from 1 to 5
and compare two cases, one in which all sources are modelled up to �max = 10,
and one in which only the first is modelled in this way and all others are modelled
isotropically. We use the Bayesian information criterion (BIC) [14] to find the
optimal balance between model fit and model complexity. The result is plotted in
Fig. 3 and shows that minimal BIC is obtained with one anisotropic and at least
two isotropic components. Slices of the corresponding tissue volume fractions
are shown as well and allow for a better interpretation of this result. The first
3 components can be associated to WM, GM and CSF. Additional components
can not be related to known anatomy. Similar results were obtained in dataset 2.
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Fig. 4. Estimated response functions for dataset 2. From left to right: (A) anisotropic
response function, and (B) radial component of all response functions (full lines), com-
pared to the WM, GM and CSF response estimated as in [8] (dashed lines); (C) residual
compared to the supervised method; (D) weights of the response estimation.

Fig. 5. Estimated tissue ODFs. (A-D) for dataset 1. (E-H) for dataset 2.

Based on the optimal model complexity, we apply the proposed method to
decompose both DWI datasets into 3 tissue classes, two of which are modelled
isotropically. The response functions of dataset 2 are depicted on the left in Fig. 4,
and compared to the response functions of WM, GM, and CSF, estimated as
described in [8] based on a prior segmentation of the T1 image (dashed lines).
The RFs estimated in our (unsupervised) method qualitatively correspond to
those obtained from the supervised method, up to a scaling factor. Moreover,
we consistently obtained a smaller residual fitting error given the same model
complexity, as shown in Fig. 4. Notice how the algorithm converges after about
5 iterations. The graphs on the right of Fig. 4 show the weights W by which
each voxel contributes to the estimated kernels. Interestingly, these are naturally
sparse in convex NMF, as pointed out in [10]. In Fig. 5, we show the tissue ODFs
for both datasets. The ODF of component 1 closely resembles the fibre ODF in [8]
and nicely captures partial voluming at the WM-GM interface.
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Fig. 6. Results of dataset 3. (A-B) T1 and T2. (C-F) Tissue ODFs of 4 components.
(G-H) Close-up of the WM ODF, overlaid onto the estimated edema density, and T2.

For dataset 3, the model selection as described above suggested one anisotropic
and 3 isotropic kernels, and the resulting tissue ODFs are shown in Fig. 6. Results
indicate that, in addition to WM, GM, and CSF, edema is detected as a 4th
component. Notice that CSF is detected in the surgical cavity.

4 Discussion and Conclusion

In this work, we introduced a generalization of multi-tissue SD as a blind source
separation problem, formulated as convex NMF in the SH basis. Like SD, our
approach assumes non-negativity of the tissue ODFs and spatial invariance of
their RFs, but jointly optimizes the RFs instead of assuming them as known.

As such, our method is an unsupervised RF estimation method that, in con-
trast to [8], does not require (alignment to) a T1-segmentation. Instead, we
impose the convexity constraint to ensure that the RF is actually observed in
the data, typically in a sparse set of voxels. Not only does this broaden the appli-
cation of multi-tissue SD to DWI data that could not be corrected for distortions
or for which no T1 is available, ultimately a better fit to the data was obtained.

For the normal brain, we found optimal model complexity with one anisotropic
and two isotropic RFs, which can be associated to WM, GM, and CSF, and
agrees with the model adopted in [8]. Instead of imposing such model explic-
itly, our method is more flexible in that it allows to estimate the most suitable
number of sources and their SH order from the data itself. For instance in brain
tumour data, our method detected the need for a 4th component that could be
associated to edema. We expect that, by explicitly accounting for edema, the
reconstructed WM ODF is less contaminated by the increased diffusion, which
may facilitate tracing WM fibre bundles through edema. Possibly, this approach
can be extended to characterize tissue heterogeneity within the tumour itself.

In future work, the presented method may be applied to explore tissue mi-
crostructure and growth patterns in brain tumours, as well as in other organs.
Furthermore, a straightforward extension to multiple subjects can be used for
group analyses of patients and controls.
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