Abstract
Diffusion-weighted imaging (DWI) allows to probe tissue microstructure non-invasively and study healthy and diseased white matter (WM) in vivo. Yet, less research has focussed on modelling grey matter (GM), cerebrospinal fluid (CSF) and other tissues. Here, we introduce a fully data-driven approach to spherical deconvolution, based on convex non-negative matrix factorization. Our approach decomposes multi-shell DWI data, represented in the basis of spherical harmonics, into tissue-specific orientation distribution functions and corresponding response functions. We evaluate the proposed method in phantom simulations and in vivo brain images, and demonstrate its ability to reconstruct WM, GM and CSF, unsupervised and solely relying on DWI.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Le Bihan, D., Breton, E., Lallemand, D., Grenier, P., Cabanis, E., Laval-Jeantet, M.: MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161(2), 401–407 (1986)
Beaulieu, C.: The basis of anisotropic water diffusion in the nervous system – a technical review. NMR in Biomedicine 15(7-8), 435–455 (2002)
Panagiotaki, E., Schneider, T., Siow, B., Hall, M.G., Lythgoe, M.F., Alexander, D.C.: Compartment models of the diffusion MR signal in brain white matter: A taxonomy and comparison. NeuroImage 59(3), 2241–2254 (2012)
Tournier, J.-D., Calamante, F., Connelly, A.: Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution. NeuroImage 35(4), 1459–1472 (2007)
Parker, G.D., Marshall, D., Rosin, P.L., Drage, N., Richmond, S., Jones, D.K.: A pitfall in the reconstruction of fibre ODFs using spherical deconvolution of diffusion MRI data. NeuroImage 65, 433–448 (2013)
Schultz, T., Groeschel, S.: Auto-calibrating spherical deconvolution based on ODF sparsity. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part I. LNCS, vol. 8149, pp. 663–670. Springer, Heidelberg (2013)
Roine, T., Jeurissen, B., Perrone, D., Aelterman, J., Leemans, A., Philips, W., Sijbers, J.: Isotropic non-white matter partial volume effects in constrained spherical deconvolution. Frontiers in Neuroinformatics 8 (2014)
Jeurissen, B., Tournier, J.-D., Dhollander, T., Connelly, A., Sijbers, J.: Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data. NeuroImage 103, 411–426 (2014)
Andersson, J.L.R., Skare, S., Ashburner, J.: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. NeuroImage 20(2), 870–888 (2003)
Ding, C.H.Q., Li, T., Jordan, M.I.: Convex and semi-nonnegative matrix factorizations. IEEE Trans. on Pattern Analysis and Machine Intelligence 32(1), 45–55 (2010)
Xie, Y., Ho, J., Vemuri, B.: Nonnegative factorization of diffusion tensor images and its applications. In: Szkely, G., Hahn, H. (eds.) Information Processing in Medical Imaging. LNCS, vol. 6801, pp. 550–561. Springer, Heidelberg (2011)
Reisert, M., Skibbe, H., Kiselev, V.G.: The diffusion dictionary in the human brain is short: Rotation invariant learning of basis functions. In: Schultz, T., Nedjati-Gilani, G., Venkataraman, A., O’Donnell, L., Panagiotaki, E. (eds.) Computational Diffusion MRI and Brain Connectivity. Mathematics and Visualization, pp. 47–55. Springer, Heidelberg (2014)
Van Essen, D., Smith, S., Barch, D., Behrens, T., Yacoub, E., Ugurbil, K.: The WU-Minn human connectome project: An overview. NeuroImage 80, 62–79 (2013)
Schwarz, G.: Estimating the dimension of a model. The Annals of Statistics 6(2), 461–464 (1978)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Christiaens, D., Maes, F., Sunaert, S., Suetens, P. (2015). Convex Non-negative Spherical Factorization of Multi-Shell Diffusion-Weighted Images. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds) Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science(), vol 9349. Springer, Cham. https://doi.org/10.1007/978-3-319-24553-9_21
Download citation
DOI: https://doi.org/10.1007/978-3-319-24553-9_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24552-2
Online ISBN: 978-3-319-24553-9
eBook Packages: Computer ScienceComputer Science (R0)