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Abstract. The classification and registration of incomplete multi-modal
medical images, such as multi-sequence MRI with missing sequences,
can sometimes be improved by replacing the missing modalities with
synthetic data. This may seem counter-intuitive: synthetic data is derived
from data that is already available, so it does not add new information.
Why can it still improve performance? In this paper we discuss possible
explanations. If the synthesis model is more flexible than the classifier,
the synthesis model can provide features that the classifier could not have
extracted from the original data. In addition, using synthetic information
to complete incomplete samples increases the size of the training set.

We present experiments with two classifiers, linear support vector ma-
chines (SVMs) and random forests, together with two synthesis methods
that can replace missing data in an image classification problem: neu-
ral networks and restricted Boltzmann machines (RBMs). We used data
from the BRATS 2013 brain tumor segmentation challenge, which in-
cludes multi-modal MRI scans with T1, T1 post-contrast, T2 and FLAIR
sequences. The linear SVMs appear to benefit from the complex trans-
formations offered by the synthesis models, whereas the random forests
mostly benefit from having more training data. Training on the hidden
representation from the RBM brought the accuracy of the linear SVMs
close to that of random forests.

1 Introduction

Multi-sequence data can be very informative in medical imaging, but using it may
cause some practical problems. Training a classifier on multi-modal data, for in-
stance, generally requires that all modalities are available for all samples. If some
modalities are missing, there is a range of methods for handling or imputing the
missing values in standard statistical analysis [1]. Specifically for image analysis,
there are synthesis methods that predict missing modalities. Somemethods model
the physical properties of the imaging process, e.g., to derive intrinsic tissue pa-
rameters fromMRI scans [2] or to derive pseudo-CT fromMRI in radiotherapy ap-
plications [3,4]. But an explicit model of the imaging process is not even required,
as image processing techniques can be sufficient: for example, pseudo-CT images
have also beenmadewith tissue segmentation [5,6], with Gaussianmixture models
[7] or by registering and combining CT images [8,9].
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Interestingly, data synthesis can not only generate images but also helps as
an intermediate step. For example, Iglesias et al. [10] found that synthetic data
improved the registration of multi-sequence brain MRI. Roy et al. [11] showed
that synthetic sequences can improve segmentation consistency in datasets with
multiple MRI contrasts. Li et al. [12] predicted PET patches from MRI data with
convolutional neural networks, and found that including this synthetic PET data
could improve classification of Alzheimer’s disease.

There is something paradoxical about these results: if the synthetic data is
derived from the available data and does not add new information, how can it still
improve the performance? If the data synthesis is more flexible than the existing
model, the synthetic data could add a useful transformation that makes the data
easier to analyze. Data synthesis may also help to use the training data more
efficiently, by allowing samples with different missing modalities to be combined
into a single, large training set. Finally, synthesis methods that use unlabeled
data, such as those discussed here, are an elegant way to add unsupervised
learning to supervised models. However, most studies with synthetic data do
not feature mixed training data or extra unlabeled examples, which suggests
that the extra modeling power of the synthesis method could be important.

We present experiments that compare simple and complex classifiers trained
with synthetic data on multi-sequence MRI data from the BRATS brain tumor
segmentation challenge [13]. We use neural networks and restricted Boltzmann
machines (RBMs) to provide synthetic replacements for missing image sequences.
These representation learning [14] methods aim to learn new, abstract represen-
tations from the data. We use these representations to train linear support vector
machines (SVMs) and random forests. We compare the results of using data syn-
thesis with those of simply replacing missing data with a constant value. The
data synthesis models are non-linear, so we expect that they can improve the
results of the linear SVM but have a smaller effect for the random forests.

2 Methods

Image Synthesis with Neural Networks. We use a neural network with
three layers: an input layer with nodes vi to represent the voxels from the 3D
input patches, a hidden layer with nodes hj , and a layer with nodes yk represent-
ing the 3D patch to be predicted. In this feed-forward network the visible nodes
vi are connected with weights Wij to the hidden nodes hj , which are connected
to the output nodes ŷk with weights Ujk. The parameters bj and ck are biases.
The activation of the nodes given input v is given by

hj = sigm(
∑

i

Wijvi + bj) and ŷk =
∑

j

Ujkhj + ck, (1)

with sigm (x) = 1
1+exp(−x) . We use backpropagation to learn the weights that

optimize the reconstruction error between the predicted ŷ and true values y:

err (y, ŷ) =
∑

k

|yk − ŷk| . (2)
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Restricted Boltzmann Machines. A restricted Boltzmann machine (RBM)
models the joint probability over a set of visible nodes v and hidden nodes h,
with an undirected connection with weight Wij between each visible node vi and
hidden node hj . Each visible node has a bias bi, each hidden node a bias cj . We
use noisy rectified linear units in the hidden layer and real-valued nodes with a
Gaussian distribution for the visible nodes [15]. The weights and biases define
the energy function

E (v,h) =
∑

j

(vi − bi)
2

2σ2
i

−
∑

i, j

vi
σi

Wijhj −
∑

j

cjhj , (3)

where σi is the standard deviation of the Gaussian noise of visible node i. The
joint distribution of the input v and hidden representation h is defined as

P (v,h) =
exp (−E (v,h))

Z
, (4)

where Z is a normalization constant. The conditional probabilities for the hidden
nodes given the visible nodes and vice versa are

P (hj |v ) = max(0,
∑

i

Wijvi + cj +N (0, sigm(
∑

i

Wijvi + cj))) and (5)

P (vi |h ) = N (
∑

j

Wijhj + bi, σi), with sigm (x) =
1

1 + exp (−x)
. (6)

We use stochastic gradient descent with persistent contrastive divergence [15,16]
to find weights W and biases b and c that give a high probability to samples
from the training distribution.

Although the energy E (v,h) can be calculated with Eq. 3, the normalization
constant Z prohibits computing the probability P (v,h) for non-trivial models.
However, we can still sample from the distribution using Gibbs sampling and
the conditional probabilities P (hj |v ) and P (vi |h ) (Eqs. 5 and 6).

The standard RBM has one set of visible nodes. To model the patches for
multiple sequences we use a separate set of visible nodes vs for each sequence s,
connected to a shared set of hidden nodes h. There are no direct connections be-
tween visible nodes, so the interactions between sequences are modeled through
the hidden nodes. We train this RBM on training samples with the same patch in
every sequence to learn the joint probability distribution of the four sequences.

Image Synthesis with RBMs. In theory we could calculate the probability
of one sequence given the others, P (vs |v\vs ), to predict a missing sequence,
but the normalization constant Z makes this impossible. We resort to Gibbs
sampling to synthesize the missing sequence. We initialize the model with the
available sequences and keep these values fixed. We set the visible nodes for the
missing sequence to 0, the mean value for our normalized patches. During Gibbs
sampling we alternate sampling from the visible and hidden layers. We use the
final values of the visible nodes for the missing sequence as the synthesized patch.
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3 Data and Implementation

We used data of 30 patients from the BRATS 2013 brain tumor segmentation
challenge [13] with four MRI sequences per patient: T1, T1 post-contrast (T1c),
T2 and FLAIR. The scans of each patient are rigidly registered to the T1c image,
which has the highest resolution, and resampled to 1 mm isotropic resolution.
The dataset includes brain masks and class labels for four tumor structures.

For each patient we extracted patches of 9×9×9 voxels from the same location
in each sequence. For feature learning we used 10 000 patches per scan, centered
at random voxels in the brain mask. For classification we used the label data to
create a balanced training set with approximately 1

5 th of the samples for each
class (four tissue classes and the non-tumor background).

We normalized the data twice. First, each scan was normalized to zero mean
and unit variance to remove large differences between scans. After extracting
patches we calculated the mean intensity, standard deviation and the intensity
of the center voxel for each patch, since these features may help to discrimi-
nate tissue classes. Finally, we normalized each patch before training the neural
networks and RBMs, since this helps to learn the local image structures.

We trained the neural network and RBM on unlabeled patches, implemented
with the Theano library [17] for Python. The neural networks had one hidden
layer of 600 binary nodes; the RBMs had 600 noisy rectified linear units in the
hidden layer. Using more nodes or layers did not improve the performance. We
used stochastic gradient descent with a decreasing learning rate for both models,
with persistent contrastive divergence to estimate the updates of the RBM.

After training the models, we synthesized missing sequences from three known
sequences, using Eq. 1 for the neural network and Gibbs sampling (20 iterations)
for the RBM. As a baseline method, we replaced missing sequences with all zeros,
the mean value of the normalized patches.

We trained random forest and linear SVM classifiers from Scikit-learn [18] to
classify the five tissue types. The feature vectors were composed of either the
normalized intensity values of observed and synthesized patches, or the values of
the hidden layer of the RBM. We also included the intensity of the center voxel
and the mean intensity and standard deviation of the patch intensities.

We repeated our experiments for five train/validation/test splits, each with
20 training scans, 5 scans to validate the model parameters and 5 test scans. For
each split, we used the validation set to optimize the number of trees (up to 200)
in the random forest, the L2 regularization of the SVM, and the hyperparameters
of the neural networks and RBMs. We report the mean accuracy on the test sets.

4 Experiments

We present two classification scenarios. In the first, all samples are missing the
same sequence. As a baseline we use the classification accuracy without data
synthesis, measured on the full dataset and on datasets where we removed one
sequence from the training and test data. Next, we look at data synthesis to
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complete the missing sequences. We trained classifiers on complete samples and
tested on samples with one synthetic sequence. We also give the accuracy of
classifiers trained on samples with a synthetic sequence, because the synthetic
data might have a different distribution than the real data. Training and testing
a classifier on data with different distributions might reduce its performance. Fi-
nally, we trained classifiers on the hidden representation from the RBM directly.

The second scenario uses a mixed training set, in which every sample is still
missing one sequence, but where every quarter of the training set is missing a
different sequence to simulate a combination of heterogeneous datasets. Without
data synthesis, a separate classifier is needed for each subset of samples with the
same three sequences. We use this as a baseline for the synthesis experiments.
The RBM can be trained on the mixed training set. The neural networks have a
practical problem: with no training samples with four sequences, we cannot train
a network that predicts one sequence from the other three. Instead, we trained
networks with one (MLP 1–1) or two (MLP 2–1) input sequences to predict one
output sequence. Each option yields three networks to predict one sequence for a
sample with three available sequences; we used the average prediction. We used
the synthesis methods to complete the training set and compare with replacing
the missing values with zeros, the mean value of the normalized patches.

5 Results

Table 1 shows the results of removing one of the MRI sequences from the test
set. When training without synthesis, removing T1c or FLAIR reduced the ac-
curacy more than removing T1 or T2, suggesting that T1c and FLAIR provide
information that is not in T1 or T2. (The T1c scans also had a higher resolution.)

Training and testing with one synthetic sequence gave an accuracy similar to
that of training on the dataset without the sequence. Replacing the synthetic
data with zeros also gave similar results. This fits with our hypothesis that the
synthetic data might not add new information. Adding synthetic data did not
make the results much worse, which is useful if the synthetic data is used to
combine data from multiple datasets. Using RBM synthesis was slightly better
than using a neural network or replacing the sequence with zeros. Training on
synthetic data instead of on real data slightly improved the accuracy, most likely
because classifiers were confused by the different distributions of the real and
synthetic data. Training on the hidden representation from the RBM increased
the accuracy of the linear SVM and brought it closer to that of the random forest.
This suggests that although the RBM does not add new information, it can still
transform the data in a way that helps the linear SVM. The RBM representation
did not improve the accuracy of the more complex random forests.

Table 2 shows the results of training with a mixed training set with partially
incomplete data. Training on subsets of complete samples (sharing the same
three sequences, 1

4 th of the samples) gave a lower accuracy than training on the
full set. Using the synthesis methods to complete the samples, we trained a classi-
fier on all samples, which gave a higher accuracy than training on subsets. There
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Table 1. Classification accuracy (linear SVM | random forest) for different synthesis
methods, with test sets in which all samples are missing the same sequence. Results in
bold are significantly different from the baseline results in the top row (p < 0.05).

Missing sequence
Full set T1 T1c T2 FLAIR

Train and evaluate on voxel values, without synthesis
68.83|73.22 67.90|72.97 58.67|61.62 68.26|72.87 59.13|69.60

Train on complete samples, evaluate with synthesized data
with zeros 67.32|72.61 54.26|59.77 67.17|72.08 58.10|65.03
by MLP 68.32|72.95 56.21|60.00 67.48|72.52 58.33|68.53
by RBM 68.42|73.06 55.34|60.33 67.35|72.38 59.66|67.57

Train and evaluate with synthesized data
with zeros 68.47|73.36 57.88|61.75 67.90|72.73 59.94|69.38
by MLP 67.37|73.01 58.34|61.22 66.59|72.89 60.19|69.90
by RBM 69.25|73.24 60.53|61.47 68.17|72.55 62.30|69.88

Train and evaluate on values from the RBM hidden layer
RBM 72.89|74.16 72.18|73.47 61.68|61.51 70.78|72.93 66.33|69.52

Table 2. Classification accuracy (linear SVM | random forest) with partially incom-
plete training data, in which every scan is missing a random sequence. Boldface indi-
cates a significant difference with the baseline (p < 0.05). The results for the full test
set are compared with the best performing baseline (missing T2).

Missing sequence in evaluation
Full test set T1 T1c T2 FLAIR

Train on subsets with complete samples (three sequences, 1
4
th of the full set)

62.30|67.99 54.92|59.48 62.71|69.03 51.06|65.51
Train on the mixed training set, with missing sequences filled-in

with zeros 66.85|70.86 63.64|69.90 58.21|63.70 62.90|70.55 54.03|67.63
by MLP 1–1 66.99|71.44 64.28|69.99 59.27|63.95 63.50|71.17 55.82|68.73
by MLP 2–1 65.42|71.22 65.03|69.76 59.15|64.01 63.88|71.21 55.84|68.38
by RBM 57.81|70.26 54.56|69.25 51.94|63.23 56.12|70.65 50.60|68.10

Train and evaluate on values from the RBM hidden layer (all samples)
RBM 70.17|70.79 69.80|69.60 59.72|59.78 68.57|70.30 62.90|65.90

was little difference between the two neural network approaches and replacing
the missing values by zeros. The RBM synthesis gave a lower accuracy, possibly
because synthesizing the missing training sequences made it harder to optimize
the model. Training directly on the hidden representation from the RBM gave
the highest accuracy for the linear SVM, as in the first experiment. The results
with random forests were comparable to those of training on synthesized data.
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6 Discussion and Conclusion

Data synthesis methods can improve the classification accuracy of multi-modal
image analysis by providing synthetic data for incomplete examples. We first ex-
plored the explanation that the synthesis models may offer data transformations
that are useful to the classifier. In our experiments in which the same modality
was missing for all samples, we found few significant improvements from using
synthetic T1, T1c or T2. We suspect that these modalities are too similar to
produce useful transformations. Synthesized FLAIR did give a small improve-
ment. Moreover, training on the RBM hidden layer significantly improved the
accuracy for both classifiers and brought the SVMs close to the random forests.
This suggests that the RBM extracts features that are new to the linear SVMs,
but that could already be extracted by the random forests.

We found stronger improvements from using synthetic data in our second
experiment. The synthesis methods made it possible to combine samples with
different missing sequences in one training set. Using this larger training set
increased the accuracy of both linear SVMs and random forests. We found sim-
ilar results by replacing the missing values with zeros, the mean intensity after
normalization. This suggests that at least part of the in accuracy improvement
might be the result of having more training data.

In these applications the RBMs have a practical advantage over neural net-
works, because RBMs learn a joint probability distribution that can be used to
predict any missing sequence. In contrast, neural networks are explicitly trained
to predict one sequence given the others, so they need a separate network for
each sequence. In our experiments the neural networks had a slightly lower re-
construction error, because the RBMs optimize a different learning objective.

Both neural networks and RBMs are trained with unlabeled data, a useful
property that makes it easier to train them on large datasets. This can be an
elegant way to use unlabeled data to improve a supervised classifier.

In conclusion: synthetic data might help classification because it allows better
use of available training data, and because it offers new transformations of the
data. This second contribution depends on the difference in complexity of the
synthesis model and the classifier. A simpler classifier is more likely to benefit
from the additional features that the synthesis model can extract from the data,
even though the synthetic data does not contain extra information. In contrast,
more complex classifiers can extract more information from the original data
and are less likely to benefit from synthetic data. Whether it is better to include
the extra complexity in the classifier or in a synthesis model is up for discussion.
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contrast synthesis. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801,
pp. 371–383. Springer, Heidelberg (2011)

12. Li, R., Zhang, W., Suk, H.-I., Wang, L., Li, J., Shen, D., Ji, S.: Deep learning
based imaging data completion for improved brain disease diagnosis. In: Golland,
P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part III.
LNCS, vol. 8675, pp. 305–312. Springer, Heidelberg (2014)

13. Menze, B.H., Jakab, A., Bauer, S., et al.: The Multimodal Brain Tumor Image Seg-
mentation Benchmark (BRATS). IEEE Transactions on Medical Imaging (2014)

14. Bengio, Y., Courville, A., Vincent, P.: Representation Learning: A Review and
New Perspectives. Technical report, Université de Montréal (2012)
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