Abstract
Accurate localization, identification and segmentation of vertebrae is an important task in medical and biological image analysis. The prevailing approach to solve such a task is to first generate pixelindependent features for each vertebra, e.g. via a random forest predictor, which are then fed into an MRF-based objective to infer the optimal MAP solution of a constellation model. We abandon this static, twostage approach and mix feature generation with model-based inference in a new, more flexible, way. We evaluate our method on two data sets with different objectives. The first is semantic segmentation of a 21-part body plan of zebrafish embryos in microscopy images, and the second is localization and identification of vertebrae in benchmark human CT.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Glocker, B., Feulner, J., Criminisi, A., Haynor, D.R., Konukoglu, E.: Automatic localization and identification of vertebrae in arbitrary field-of-view CT scans. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part III. LNCS, vol. 7512, pp. 590–598. Springer, Heidelberg (2012)
Glocker, B., Zikic, D., Konukoglu, E., Haynor, D.R., Criminisi, A.: Vertebrae localization in pathological spine CT via dense classification from sparse annotations. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part II. LNCS, vol. 8150, pp. 262–270. Springer, Heidelberg (2013)
Seifert, S., Barbu, A., Zhou, S.K., Liu, D., Feulner, J., Huber, M., Suehling, M., Cavallaro, A., Comaniciu, D.: Hierarchical parsing and semantic navigation of full body ct data. In: SPIE Medical Imaging 2009: Image Processing, vol. 7259, pp. 725902–725902–8 (2009)
Shotton, J., Winn, J.M., Rother, C., Criminisi, A.: textonBoost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 1–15. Springer, Heidelberg (2006)
Schroff, F., Criminisi, A., Zisserman, A.: Object class segmentation using random forests. In: BMVC (2008)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Pereira, F., Burges, C., Bottou, L., Weinberger, K. (eds.) NIPS, pp. 1097–1105. Curran Associates, Inc. (2012)
Tu, Z.: Auto-context and its application to high-level vision tasks. In: CVPR 2008, pp. 1–8 (June 2008)
Nowozin, S., Rother, C., Bagon, S., Sharp, T., Yao, B., Kohli, P.: Decision tree fields. In: ICCV, pp. 1668–1675 (2011)
Schmidt, U., Rother, C., Nowozin, S., Jancsary, J., Roth, S.: Discriminative non-blind deblurring. In: CVPR, pp. 604–611 (2013)
Kontschieder, P., Kohli, P., Shotton, J., Criminisi, A.: Geof: Geodesic forests for learning coupled predictors. In: CVPR, pp. 65–72 (2013)
Yao, J., Glocker, B., Klinder, T., Li, S.: Recent advances in computational methods and clinical applications for spine imaging (2015)
Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)
Roberts, M.G., Cootes, T.F., Adams, J.E.: Automatic location of vertebrae on dxa images using random forest regression. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part III. LNCS, vol. 7512, pp. 361–368. Springer, Heidelberg (2012)
Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(6), 681–685 (2001)
Kolmogorov, V.: Convergent tree-reweighted message passing for energy minimization. IEEE TPAMI 28(10), 1568–1583 (2006)
Besag, J.: On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society. Series B (Methodological), 259–302 (1986)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Richmond, D., Kainmueller, D., Glocker, B., Rother, C., Myers, G. (2015). Uncertainty-Driven Forest Predictors for Vertebra Localization and Segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds) Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science(), vol 9349. Springer, Cham. https://doi.org/10.1007/978-3-319-24553-9_80
Download citation
DOI: https://doi.org/10.1007/978-3-319-24553-9_80
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24552-2
Online ISBN: 978-3-319-24553-9
eBook Packages: Computer ScienceComputer Science (R0)