Abstract
In this work we consider the problem of sematic part-labeling of 3-D meshesof ear implants. This is a challenging problem and automatic solutions are of high practical relevance, since they help to automate the design of hearing aids. The contribution of this work is a new framework which outperforms existing approaches for this task. To achieve the boost in performance we introduce the new concept of a global parametric transition prior. To our knowledge, this is the first time that such a generic prior is used for 3-D mesh processing, and it may be found useful for a large class of 3-D meshes. To foster more research on the important topic of ear implant labeling, we collected a large data set of 3-D meshes, with associated ground truth labels, which we will make publicly available.
Chapter PDF
Similar content being viewed by others
References
Baloch, S., Melkisetoglu, R., Flöry, S., Azernikov, S., Slabaugh, G., Zouhar, A., Fang, T.: Automatic detection of anatomical features on 3D ear impressions for canonical representation. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part III. LNCS, vol. 6363, pp. 555–562. Springer, Heidelberg (2010)
Baloch, S., Zouhar, A., Fang, T.: Deformable registration of organic shapes via surface intrinsic integrals: application to outer ear surfaces. In: Menze, B., Langs, G., Tu, Z., Criminisi, A. (eds.) MICCAI 2010. LNCS, vol. 6533, pp. 11–20. Springer, Heidelberg (2011)
Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge Un. Press (2004)
Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Analysis, and Machine Intelligence (2001)
Criminisi, A., Shotton, J.: Decision Forests for Computer Vision and Medical Image Analysis. Springer Publishing Company, Incorporated (2013)
Delong, A., Boykov, Y.: Globally optimal segmentation of multi-region objects. In: ICCV, pp. 285–292. IEEE (2009)
Felzenszwalb, P.F., Veksler, O.: Tiered scene labeling with dynamic programming. In: CVPR, pp. 3097–3104. IEEE (2010)
Kalogerakis, E., et al.: Learning 3D mesh segmentation and labeling. In: SIGG (2010)
Koertgen, M., Park, G.J., Novotni, M., Klein, R.: 3D shape matching with 3d shape contexts. In: Proc. 7th Central European Seminar on Comp. Graphics (2003)
Nello, C., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods, 1 edn. Cambridge University Press (2000)
Winn, J., Shotton, J.: The layout consistent random field for recognizing and segmenting partially occluded objects. In: CVPR (2006)
Zouhar, A., Baloch, S., Tsin, Y., Fang, T., Fuchs, S.: Layout consistent segmentation of 3-D meshes via conditional random fields and spatial ordering constraints. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part III. LNCS, vol. 6363, pp. 113–120. Springer, Heidelberg (2010)
Zouhar, A., Schlesinger, D., Fuchs, S.: Joint shape classification and labeling of 3-D objects using the energy minimization framework. In: Weickert, J., Hein, M., Schiele, B. (eds.) GCPR 2013. LNCS, vol. 8142, pp. 71–80. Springer, Heidelberg (2013)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Zouhar, A., Rother, C., Fuchs, S. (2015). Semantic 3-D Labeling of Ear Implants Using a Global Parametric Transition Prior. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds) Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science(), vol 9350. Springer, Cham. https://doi.org/10.1007/978-3-319-24571-3_22
Download citation
DOI: https://doi.org/10.1007/978-3-319-24571-3_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24570-6
Online ISBN: 978-3-319-24571-3
eBook Packages: Computer ScienceComputer Science (R0)