Abstract
In recent works, 358 cortical landmarks named Dense Individualized Common Connectivity based Cortical Landmarks (DICCCOLs) were identified. Instead of whole-brain parcellation into sub-units, it identified the common brain regions that preserve consistent structural connectivity profile based diffusion tensor imaging (DTI). However, since the DICCCOL system was developed based on connectivity patterns only, morphological and geometric features were not used. Thus, in this paper, we constructed distance networks based on both geodesic distance and Euclidean distance to morphologically profile and characterize DICCCOL landmarks. Based on the distance network derived from 10 templates subjects with DICCCOL, we evaluated the anatomic consistency of each DICCCOL, identified reliable/unreliable DICCCOLs, and modeled the distance network of DICCCOLs. Our results suggested that the most relative consistent connections are long distance connections. Also, both of the distance measurements gave consistent observations and worked well in identifying anatomical consistent and inconsistent DICCCOLs. In the future, distance networks can be potentially applied as a complementary metric to improve the prediction accuracy of DICCCOLs or other ROIs defined on cortical surface.
Chapter PDF
Similar content being viewed by others
References
Zhu, D., Li, K., Guo, L., Jiang, X., Zhang, T., Zhang, D., Chen, H., Deng, F., Faraco, C., Jin, C., Wee, C.-Y., Yuan, Y., Lv, P., Yin, Y., Hu, X., Duan, L., Hu, X., Han, J., Wang, L., Shen, D., Miller, L.S., Li, L., Liu, T.: DICCCOL: Dense Individualized and Common Connectivity-Based Cortical Landmarks. Cereb. Cortex (2012)
Chen, H., Li, K., Zhu, D., Jiang, X., Yuan, Y., Lv, P., Zhang, T., Guo, L., Shen, D., Liu, T.: Inferring group-wise consistent multimodal brain networks via multi-view spectral clustering. IEEE Trans. Med. Imaging 32, 1576–1586 (2013)
Chen, H., Li, K., Zhu, D., Guo, L., Jiang, X., Liu, T.: Group-wise optimization and individualized prediction of structural connectomes. In: ISBI, pp. 742–745. IEEE (2014)
Datar, M., Lyu, I., Kim, S., Cates, J., Styner, M.A., Whitaker, R.: Geodesic distances to landmarks for dense correspondence on ensembles of complex shapes. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part II. LNCS, vol. 8150, pp. 19–26. Springer, Heidelberg (2013)
Li, G., Guo, L., Nie, J., Liu, T.: An automated pipeline for cortical sulcal fundi extraction. Med. Image Anal. 14, 343–359 (2010)
Vértes, P.E., Alexander-Bloch, A.F., Gogtay, N., Giedd, J.N., Rapoport, J.L., Bullmore, E.T.: Simple models of human brain functional networks. Proc. Natl. Acad. Sci. U. S. A. 109, 5868–5873 (2012)
Alexander-Bloch, A.F., Vértes, P.E., Stidd, R., Lalonde, F., Clasen, L., Rapoport, J., Giedd, J., Bullmore, E.T., Gogtay, N.: The anatomical distance of functional connections predicts brain network topology in health and schizophrenia. Cereb. Cortex 23, 127–138 (2013)
Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M.: FSL. Neuroimage 62, 782–790 (2012)
Liu, T., Li, H., Wong, K., Tarokh, A., Guo, L., Wong, S.T.C.: Brain tissue segmentation based on DTI data. Neuroimage 38, 114–123 (2007)
Liu, T., Nie, J., Tarokh, A., Guo, L., Wong, S.T.C.: Reconstruction of central cortical surface from brain MRI images: method and application. Neuroimage 40, 991–1002 (2008)
Toussaint, N., Souplet, J., Fillard, P.: MedINRIA: Medical image navigation and research tool by INRIA. In: MICCAI, pp. 1–8 (2007)
Kimmel, R., Sethian, J.A.: Computing geodesic paths on manifolds. Proc. Natl. Acad. Sci. 95, 8431–8435 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Yuan, Y., Chen, H., Lu, J., Zhang, T., Liu, T. (2015). Distance Networks for Morphological Profiling and Characterization of DICCCOL Landmarks. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds) Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science(), vol 9350. Springer, Cham. https://doi.org/10.1007/978-3-319-24571-3_46
Download citation
DOI: https://doi.org/10.1007/978-3-319-24571-3_46
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24570-6
Online ISBN: 978-3-319-24571-3
eBook Packages: Computer ScienceComputer Science (R0)