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Abstract. In recent works, 358 cortical landmarks named Dense Individualized 
Common Connectivity based Cortical Landmarks (DICCCOLs) were identified. 
Instead of whole-brain parcellation into sub-units, it identified the common 
brain regions that preserve consistent structural connectivity profile based dif-
fusion tensor imaging (DTI). However, since the DICCCOL system was devel-
oped based on connectivity patterns only, morphological and geometric features 
were not used. Thus, in this paper, we constructed distance networks based on 
both geodesic distance and Euclidean distance to morphologically profile and 
characterize DICCCOL landmarks. Based on the distance network derived from 
10 templates subjects with DICCCOL, we evaluated the anatomic consistency 
of each DICCCOL, identified reliable/unreliable DICCCOLs, and modeled the 
distance network of DICCCOLs. Our results suggested that the most relative 
consistent connections are long distance connections. Also, both of the distance 
measurements gave consistent observations and worked well in identifying ana-
tomical consistent and inconsistent DICCCOLs. In the future, distance net-
works can be potentially applied as a complementary metric to improve the 
prediction accuracy of DICCCOLs or other ROIs defined on cortical surface. 
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1 Introduction 

In a previous work, Zhu et al. identified 358 brain landmarks that are consistently 
preserved across individuals named Dense Individualized Common Connectivity 
based Cortical Landmarks (DICCCOLs) [1]. Instead of whole-brain parcellation into 
sub-units, these DICCCOLs landmarks aim to identify the common brain regions that 
preserve consistent structural connectivity profile based diffusion tensor imaging 
(DTI) (section 2.2). It has been shown that these landmarks can be applied as network 
nodes that possess correspondence across individuals to investigate brain function-
al/structural networks [2]. However, despite that it is an important contribution to 
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human brain mapping field, several limitations of current DICCCOL framework had 
also been identified [3]. Firstly, different brain anatomic regions may also generate 
similar DTI derived axonal fiber connection profiles and the proposed tracemap de-
scriptor [1] might not be able to differentiate these brain regions in such cases. Sec-
ondly, since DICCCOL is obtained by data driven approaches and the training process 
only searches the neighbor regions for the optimal locations of DICCCOLs (section 
2.2), some DICCCOLs may converge to the local minimum during the search process. 
Due to these limitations, the same DICCCOL may converge to different anatomical 
locations during training and prediction process. Though three experts visually inspect 
the results to eliminate those connectionally or anatomically inconsistent landmarks 
before generating the finalized DICCCOLs, due to the unavoidable subjective judg-
ments and the experts’ possible mistakes, there still might be unreliable ROIs embed-
ded in the template of the current DICCCOL system. 

 In the literature, distance measurement has been shown to be promising in charac-
terizing brain anatomies. In [4], the geodesic distances (GDs) between landmarks 
were applied to characterize and extract structures on the cortex. In [5], the authors 
extracted sulci fundi on cerebral cortex based on the geodesic characteristics. In [6] 
and [7], the Euclidean distance (ED) was applied to investigate and characterize the 
spatial relationships between the brain’s functional regions. GD is powerful in de-
scribing anatomical correlations between cortical landmarks since the neocortex of 
human brain is highly convoluted and the brain anatomy also correlates with cortical 
folding patterns in a certain degree (Fig. 1(a)). Meanwhile, ED is simple to compute 
and does not rely on surface reconstruction quality (Fig. 1(a)).  Since the DICCCOL 
system was developed mainly based on the connectivity patterns, morphological and 
geometric features were not used. Therefore, GDs and EDs between DICCCOLs can 
be possibly applied to construct distance networks as a complementary metric to im-
prove DICCCOL. 

By constructing distance networks of DICCCOLs in the 10 templates subjects and 
comparing the variability and regularity of these 10 networks, we evaluate the ana-
tomical consistency of each DICCCOL, identify reliable/unreliable DICCCOLs, and 
model the distance network of DICCCOLs. Intriguingly, our result showed that the 
most consistent distance edges are the long global distance connections while the 
most inconsistent edges are local connections. Also, the distance networks based ED 
and GD gave quite similar observations and performed accurately in identifying ana-
tomical consistent or inconsistent DICCCOLs. By adding this distance network as a 
new constraint of DICCCOL, the reliability of DICCCOL system could be increased 
in the future in both modeling common cortical landmarks and predicting these land-
marks in new subject’s brain. 

2 Method 

2.1 Experimental Data 

The DTI data downloaded from DICCCOL website (http://dicccol.cs.uga.edu/) which 
was applied in the development and the definition of DICCCOLs was applied in this 



382 Y. Yuan et al. 

study. As described in Zhu et al.’s paper [1], the scans were performed on a GE 3T 
Sigma MRI system using an 8-channel head coil. The acquisition parameters are: 
matrix size = 128×128, 60 slices, image resolution = 2×2×2mm isotropic, TR=15s, 
ASSET=2, 3 B0 images, 30 optimized gradient directions, b-value=0/1000. Acquired 
data were preprocessed via the preprocessing pipeline of DICCCOL as described in 
[1] which includes eddy current correction, skull removal, computing FA image [8], 
GM/WM segmentation [9], WM surface reconstruction [10], and streamline fiber 
tracking [11]. 

2.2 DICCCOL 

DICCCOLs were originally developed by data-driven approaches [1]. In brief, train-
ing subjects were aligned to the same space by linear image registration. 2056 vertices 
on the reconstructed cortical surfaces were randomly selected as initial ROIs and the 
correspondence was assigned to the vertices from different subjects that are spatially 
close to each other. Then each initial ROI was moved around to maximize the similar-
ity of its DTI connection profile to the profile of corresponding ROIs. By doing so 
iteratively, all those ROIs finally converged to a location that the similarity was max-
imized. Such process was performed in two groups of subjects independently. Then 
by comparing the converged ROIs in these two groups based on the quantitative 
measurement and the advice from three experts, the ones with similarity in both spa-
tial location and connection profile were picked as DICCCOLs. Finally, 358 
DICCCOLs were picked and the 10 subjects used for training were taken as the tem-
plate [1]. 

To predict DICCCOLs on new individuals, the brain of the individual were rigidly 
aligned to the templates’ space. The location of each DICCCOL in the template brains 
were taken as the initial location. Then a search was run in its neighborhood [1] on the 
cortical surface and the location of DICCCOL on the new subject was determined as 
the region that most resemble the connection profile of the template.  

2.3 Geodesic Distance 

We applied the method based on fast matching proposed in [5, 12] to find the shortest 
path between DICCCOLs on the reconstructed cortical surface and estimate geodesic 
distance between them. Generally, by assigning speed F(x) to each vertex x on sur-
face, a closed curve evolves and expands on the surface starting from a source vertex 
in a manner of ‘wave’. During this procedure, we record the arrival time T(x) of a 
vertex x that the ‘wave’ takes to travel from the source vertex. This problem is solved 
by equation in [2]: 

          SxxFxT ∈=∇ ,1)()(                               (1)    

where S represents the surface. In this paper, we set F(x) to be ‘1’ for all vertices, so 
that arrival time T(x) is equivalent to the geodesic distance between the two vertices. 
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2.4 Distance Network Variability 

For each pair of DICCCOLs, the GD and ED between them were computed. By tak-
ing DICCCOLs as network nodes and GD/ED as the edges between nodes, a distance 
network can be constructed for DICCCOLs in each individual’s brain. By examining 
the consistency of this network between templates, we could evaluate the anatomical 
consistency of each DICCCOL, identify reliable/unreliable DICCCOLs, and model 
the distance network of DICCCOLs. The evaluation was performed based on GD 
network and ED network separately and by comparing the outcome of each network, 
the performance of ED/GD as distance constrain for cortical landmarks will be dis-
cussed. Specifically, the mean value of each edge among 10 template subjects and the 
corresponding standard deviations were obtained. Intuitively, since GD is larger than 
ED, the standard deviation of GD is also larger than ED on average which makes it 
difficult to compare these two measurements. Thus in this paper, we applied relative 
standard deviation as a measurement of the variability of edges: 

                                 EEEVar std=)(                                 (2) 

where E is the edge to measure, Estd and E  are the standard deviation and mean of 
its length. 

 

Fig. 1. (a) Illustration of geodesic distance (GD) and Euclidean distance (ED) between two 
ROIs. (b) Histogram of the variability of the edges in 10 templates’ brains. (c) Histogram of the 
average edge variability of the DICCCOLs among templates. (d) Histogram of the distance 
between DICCCOL consistency ranks. 
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3 Results 

Firstly, we compute the DICCCOLs’ distance network in the brains of templates. The 
distributions of the variability of GD and ED are quite similar (Fig. 1(b)). Intriguing-
ly, the most consistent edges are long distance connections while (Fig. 2(a)-(b)) the 
most inconsistent edges are local connections (Fig. 2(c)-(d)). This is partially due to 
the relative deviation we applied for analysis. Moreover, the spatial distributions of 
consistent/inconsistent GD/ED edges are quite similar (Fig. 2, Table 1, Table 2). The 
edges within occipital lobes are the most inconsistent while the edges between occipi-
tal lobes and frontal lobes are the most consistent.  

   

Fig. 2. Visualization of the edges that (a) have relatively small ED variability (<0.04); (b) have 
relatively small GD variability (<0.04); (c) have relatively large ED variability (>0.3); (d) have 
relatively large GD variability (>0.3). 

Then for each DICCCOL, the average variability of the edges ( varE ) connected to 

it were calculated (Fig. 3). By assuming that the DICCCOLs with consistent anatomy 
should stay at the same location across brains and thus the edges connected to it 

should be similar across individuals, those DICCCOLs with smaller varE  could be 

more reliable than those with larger varE . We ranked the DICCCOLs in ascending  
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order based on varE  of GD and Ed separately. The ranking results are quite similar 

between two different measurements as revealed by the histogram in Fig. 1(d). To 
examine and compare the performance of GD and ED in identifying the anatomy 
consistent and the reliable DICCCOLs, we visualized certain DICCCOLs that are 
agreed or disagreed by GD/ED on 10 templates’ cortical surfaces in Fig. 4. 
DICCCOL #245 is agreed by both measurements to be one of the most consistent 
landmarks while #290 is agreed to be one of the most inconsistent one. By visual 
check, #290’s location truly varies across templates as highlighted by arrows with 
different colors, while #245 is relatively consistent across templates. #312/#4 was 
indicated to be inconsistent by ED/GD only. However, as highlighted by the arrows 
with different colors, these DICCCOLs are also relatively anatomically inconsistent 
across templates. These observations suggested that both GD and ED can be applied 
as distance constraints for brain landmarks and they are complementary to each other. 

 

Fig. 3. Visualization of DICCCOLs in one template brain color-coded by the average standard 
deviations of (a) ED or (b) GD from each DICCCOL to the rest DICCCOLs in 10 template 
subjects. 
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Table 1. Average standard deviations of the ED between DICCCOLs within or between lobes. 

 Frontal Parietal Temporal Limbic Occipital 

Frontal 0.1130 0.0820 0.0798 0.0952 0.0659 

Parietal 0.0820 0.1245 0.0972 0.0839 0.1090 
Temporal 0.0798 0.0972 0.1184 0.0960 0.0891 
Limbic 0.0952 0.0839 0.0960 0.1497 0.0846 

Occipital 0.0659 0.1090 0.0891 0.0846 0.1683 

Table 2. Average standard deviations of the GD between DICCCOLs within or between lobes. 

 Frontal Parietal Temporal Limbic Occipital 

Frontal 0.1240 0.0898 0.0860 0.0966 0.0720 

Parietal 0.0898 0.1412 0.1081 0.0949 0.1314 
Temporal 0.0860 0.1081 0.1282 0.1011 0.1020 

Limbic 0.0966 0.0949 0.1011 0.1482 0.0993 

Occipital 0.0720 0.1314 0.1020 0.0993 0.2029 

 

Fig. 4. Visualization of four DICCCOLs (bubble) on the cortical surfaces of 10 templates. The 
DICCCOL ID and its consistency rank by different distance measurement are listed below each 
sub-figure. 

4 Conclusion 

In this paper, we analyzed the morphological profile and character of DICCCOL 
landmarks based on distance networks. The distance network based on different dis-
tance measurements gave similar observations in our experiments. Intriguingly, the 
long distance connections are more reliable than local connections. By comparing the 
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consistency of distance networks, the errors and anatomical inconsistent DICCCOLs 
in the templates were also identified. Since DICCCOL system was developed based 
on the structural connectivity network, our results showed that distance network could 
be a useful, complementary metric of the DICCCOL system. In the future, we will 
improve the reliability of DICCCOL models and the accuracy of DICCCOL predic-
tion by integrating distance network into the DICCCOL framework. And the im-
proved framework will be applied to analyze brain diseases. 
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