Abstract
We propose a parametric lumped model (LM) for fast patient-specific computational fluid dynamic simulations of blood flow in elongated vessel networks to alleviate the computational burden of 3D finite element (FE) simulations. We learn the coefficients balancing the local nonlinear hydraulic effects from a training set of precomputed FE simulations. Our LM yields pressure predictions accurate up to 2.76mmHg on 35 coronary trees obtained from 32 coronary computed tomography angiograms. We also observe a very good predictive performance on a validation set of 59 physiological measurements suggesting that FE simulations can be replaced by our LM. As LM predictions can be computed extremely fast, our approach paves the way to use a personalised interactive biophysical model with realtime feedback in clinical practice.
Chapter PDF
Similar content being viewed by others
References
Ali, S.: Pressure drop correlations for flow through regular helical coil tubes. Fluid Dynamics Research 28(4), 295–310 (2001)
Ho, C.-W., Ruehli, A.E., Brennan, P.A.: The modified nodal approach to network analysis. IEEE Transactions on Circuits and Systems 22(6), 504–509 (1975)
van der Horst, A., Boogaard, F.L., Rutten, M.C.M., van de Vosse, F.N.: A 1D wave propagation model of coronary flow in a beating heart. In: ASME Summer Bioengineering Conference (2011)
Huo, Y., Kassab, G.S.: Intraspecific scaling laws of vascular trees. Journal of the Royal So 9, 190–200 (2012)
Huo, Y., Svendsen, M., Choy, J.S., Zhang, Z.D., Kassab, G.S.: A validated predictive model of coronary fractional flow reserve. Journal of the Royal Society Interface 9(71), 1325–1338 (2012)
Itu, L., Sharma, P., Mihalef, V., Kamen, A., Suciu, C., Comaniciu, D.: A patient-specific reduced order model for coronary circulation. In: ISBI (2012)
Kim, H.J., Vignon-Clementel, E., Coogan, J.S., Figueroa, C.A., Jansen, K.E., Taylor, C.A.: Patient-specific modeling of blood flow and pressure in human coronary arteries. Annals of Biomedical Engineering 38(10), 3195–3209 (2010)
Lawson, C.L., Hanson, R.J.: Solving Least Squares Problems. SIAM (1987)
Maasrani, M., Abouliatim, I., Ruggieri, V., Corbineau, H., Verhoye, J.P., Drochon, A.: Simulations of fluxes in diseased coronary network using an electrical model. In: International Conference on Electrical Machines (ICEM) (2010)
Melchionna, S., Bernaschi, M., Succi, S., Rybicki, E.K.F.J., Mitsouras, D., Coskun, A.U., Feldman, C.L.: Hydrokinetic approach to large-scale cardiovascular blood flow. Computer Physics Communications 181(3), 462–472 (2010)
Muzychka, Y., Yovanovich, M.: Pressure drop in laminar developing flow in noncircular ducts: a scaling and modeling approach. J. of Fluids Engin. 131(11) (2009)
Noordergraaf, A., Verdouw, P.D., Boom, H.B.K.: The use of an analog computer in a circulation model. Progress in Cardiovascular Diseases 5(5), 419–439 (1963)
Petraco, R., Sen, S., Nijjer, S., Echavarria-Pinto, M., Escaned, J., Francis, D.P., Davies, J.E.: Fractional flow reserve–guided revascularization: practical implications of a diagnostic gray zone and measurement variability on clinical decisions. JACC: Cardiovascular Interventions 6(3), 222–225 (2013)
Pijls, N., van Son, J., Kirkeeide, R., Bruyne, B.D., Gould, K.L.: Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty. Circulation 87, 1354–1367 (1993)
Sankaran, S., Grady, L.J., Taylor, C.A.: Real-time sensitivity analysis of blood flow simulations to lumen segmentation uncertainty. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part II. LNCS, vol. 8674, pp. 1–8. Springer, Heidelberg (2014)
Taylor, C.A., Fonte, T.A., Min, J.K.: Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve. Journal of the American College of Cardiology 61(22), 2233–2241 (2013)
Tonino, P., Bruyne, B.D., Pijls, N., Siebert, U., Ikeno, F., van’t Veer, M., Klauss, V., Manoharan, G., Engstrøm, T., Oldroyd, K., Lee, P.V., MacCarthy, P., Fearon, W.: Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. The New England Journal of Medicine 360(3), 213–224 (2009)
Truckenbrodt, E.: Fluidmechanik. Springer (1980)
Ward-Smith, A.J.: Internal Fluid Flow. Clarendon Press (1980)
Westerhof, N., Lankhaar, J.W., Westerhof, B.E.: The arterial windkessel. Medical and Biological Engineering and Computing 47, 131–141 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Nickisch, H. et al. (2015). Learning Patient-Specific Lumped Models for Interactive Coronary Blood Flow Simulations. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds) Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science(), vol 9350. Springer, Cham. https://doi.org/10.1007/978-3-319-24571-3_52
Download citation
DOI: https://doi.org/10.1007/978-3-319-24571-3_52
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24570-6
Online ISBN: 978-3-319-24571-3
eBook Packages: Computer ScienceComputer Science (R0)