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Abstract. Mammography is the first-line modality for screening and diagnosis of 
breast cancer. Following the common practice of radiologists to examine two 
mammography views, we propose a fully automated dual-view analysis frame-
work for breast mass detection in mammograms. The framework combines  
unsupervised segmentation and random-forest classification to detect and rank 
candidate masses in cranial-caudal (CC) and mediolateral-oblique (MLO) views. 
Subsequently, it estimates correspondences between pairs of candidates in the two 
views. The performance of the method was evaluated using a publicly available 
full-field digital mammography database (INbreast). Dual-view analysis provided 
area under the ROC curve of 0.94, with detection sensitivity of 87% at specificity 
of 90%, which significantly improved single-view performance (72% sensitivity 
at 90% specificity, 78% specificity at 87% sensitivity, P<0.05). One-to-one map-
ping of candidate masses from two views facilitated correct estimation of the 
breast quadrant in 77% of the cases. The proposed method may assist radiologists 
to efficiently identify and classify breast masses. 

Keywords: Digital Mammography, Automatic Mass Detection, Dual-View, 
Machine Learning. 

1 Introduction 

Mammography is the most common imaging modality for breast cancer screening, 
with over 38 million tests performed annually in the US. The majority of certified 
breast imaging facilities in the US already use full-field digital mammography 
(FFDM) [1]. When interpreting a mammogram, radiologists typically examine images 
obtained from two anatomical projections: the cranial-caudal (CC) view and the 
mediolateral-oblique (MLO) view. A breast mass is a lesion seen in both views. How-
ever, since the two projected images are acquired by applying different compression 
on the non-rigid breast tissue, deriving the dual-view correspondence between poten-
tial masses is a non-trivial task. 

Computer-aided detection of breast masses in mammography has been studied ex-
tensively. Earlier work focused on single-view analysis using either supervised, mod-
el-based methods or unsupervised techniques, including region-based segmentation, 
boundary detection, and pixel clustering (see [2] for a thorough review). Previous 
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Images were first preprocessed by separating the breast from the background and 
identifying the pectoral muscles and the nipple. Seed detection was based on applying 
semantic thresholding [12], followed by a distance transform. Semantic thresholding 
classifies image pixels as locally dark or locally bright, and finds a global binarization 
threshold that balances the number of locally dark pixels that are brighter than the 
threshold and locally bright pixels that are darker than the threshold.  The image is 
partitioned into 20x20 tiles and a threshold is computed for each tile. The resulting 
20x20 threshold matrix is smoothed by a Gaussian filter, interpolated to the image 
dimensions and used as a per-pixel threshold for binarization (Fig. 2b). A distance 
transform is then applied to the binary image (Fig 2c) and large connected compo-
nents are selected as candidate seeds, using experimentally-set thresholds (Fig. 2d). 
The selected seeds are sorted by the maximal value of the distance transform in the 
connected component. This value is used as an initial unsupervised detection score, 
denoted ௜ܵ଴. To account for large lesions, the process is repeated with a coarser image 
portioning (5x5 tiles), and the largest connected component is added to the selected 
seeds. 

 

Fig. 2. Seed detection. A mammogram (a) is processed by semantic thresholding to produce a 
binary image (b). A distance transform is applied (c), and large connected components are 
selected (d). The contour annotation in (a) indicates a ground-truth mass. 

The contours of mass candidates were generated by finding an optimal path in a 
polar representation of the image around the seeds, similar to [13] and [14]. The max-
imal value of the seed’s distance transform was used as an initial estimate for the 
radius of the polar image. 

For each ground-truth and candidate mass contour, we extract a multitude of fea-
tures, including: (1) Shape features: area, aspect ratio, curvature along the boundaries, 
orientation, and eccentricity of a fitted ellipse; (2) Intensity features: intensity statis-
tics, normalized intensity histograms inside and outside the contour; (3) Texture fea-
tures: local entropy of gray-level values, calculated at different scales [15].  

Mass ranking was done with a random forest (RF) classifier [16] using a leave-
one-patient-out cross validation scheme. For each patient, a model was trained using a 
balanced set of true- and false-detected mass contours from all other patients. True-
detection observations were the ground-truth contours, ݉௚௧, as well as detected can-
didate masses ݉௜ with large ground-truth overlap ݀݅ܿ݁(݉௜, ݉௚௧) ≥ ߜ , where ݀݅ܿ݁(ܣ, (ܤ = ܣ|2 ∩ |ܤ |ܣ|) + ⁄|ܤ| ) and ߜ = 0.5. False-detection observations were 
candidate masses without any ground-truth overlap(݀݅ܿ݁൫݉௜, ݉௚௧൯ = 0). For each 
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test candidate contour, a class label ݈(݉௜) ∈ ሼ0,1ሽ was predicted, classifying the can-
didate as a true or false mass. The candidate’s single-view score ௜ܵଵ ∈ ሾ−1,1ሿ was 
defined by ௜ܵଵ =  ࣪(݈(݉௜) = 1) − ࣪(݈(݉௜) = 0), where ࣪(݈(݉௜) = ℒ) is calculated 
as the fraction of trees in the random-forest model that voted for class label ℒ.  

2.2 Dual View Detection 

The analysis framework for detecting corresponding mass candidates in two views is 
illustrated in Figure 1b. Given a pair of CC and MLO mammograms ܫ = ,஼஼ܫ)  ,(ெ௅ைܫ
each having a set of candidate masses ܯ஼஼ = ሼ݉ଵ஼஼, … , ݉ே஼஼ሽ ெ௅ைܯ , = ሼ݉ଵெ௅ை, … , ݉ேெ௅ைሽ, the analysis aims to find a relation from ܯ஼஼  to ܯெ௅ை 
that contains all the corresponding candidate pairs from the two views.  A corre-
spondence descriptor ܦ௜௝  is a dual-view feature vector encoding the matching be-
tween single-view features of ݉௜஼஼  and ௝݉ெ௅ை. ܦ௜௝ consists of the following features: 
(1) Location features: ratio of the distances between the centroid of the candidate 
mass and the nipple, ratio of the distances between the centroid of the candidate mass 
and a line tangential to the nipple and parallel to the pectoral muscle; (2) Shape features: 
ratios between single-view shape features, including area, perimeter, eccentricity, ellipse 
axis-length, solidity; (3) Image features: contrast difference, differences of intensity 
statistics, histogram distance (Earth Mover’s Distance) and histogram flow [17]. 

The correspondence between candidate masses ݉௜஼஼  and ௝݉ெ௅ை  is assessed by a 
correspondence score ܥ௜௝ ∈ ሾ−1,1ሿ. To estimate ܥ௜௝, a classifier is trained and used 
to predict a label ݈(ܦ௜௝) ∈ ሼ0,1ሽ for each correspondence descriptor ܦ௜௝ . The corre-

spondence score is defined by: ܥ௜௝ =  ࣪൫݈൫ܦ௜௝൯ = 1൯ − ࣪൫݈൫ܦ௜௝൯ = 0൯. 
The classifier’s training data is composed of correspondence descriptors of match-

ing (‘positive’) and non-matching (‘negative’) pairs of masses. For an image pair I, ܦ௚௧ூ   is the correspondence descriptor of the ground-truth mass contours (݉௚௧஼஼ , ݉௚௧ெ௅ை). The set of positive observations in our training set consists of ground-
truth descriptors, as well as the pairs of candidate contours with sufficiently-large 
overlap with the ground-truth: ܱܾݒݎ݁ݏାூ = ൛ܦ௚௧ூ ൟ  ∪ ൛ܦ௜௝ூ ห݀݅ܿ݁൫݉௜஼஼ , ݉௚௧஼஼ ൯ ≥ , ߜ ݀݅ܿ݁൫ ௝݉ெ௅ை , ݉௚௧ெ௅ை ൯ ≥  ൟ ߜ

Likewise, the set of negative observations consists of correspondence descriptors 
of candidate pairs, where the contour in one view overlaps with the ground-truth, 
while the contour in the other view is a false detection, which does not overlap with 
the ground-truth: ܱܾݒݎ݁ݏூି = ൛ܦ௜௝ூ ห݀݅ܿ݁൫݉௜஼஼ , ݉௚௧஼஼ ൯ ≥ , ߜ ݀݅ܿ݁൫ ௝݉ெ௅ை , ݉௚௧ெ௅ை ൯ = 0 ൟ   ∪ ൛ܦ௜௝ூ ห݀݅ܿ݁൫݉௜஼஼ , ݉௚௧஼஼ ൯ = 0 , ݀݅ܿ݁൫ ௝݉ெ௅ை , ݉௚௧ெ௅ை ൯ ≥  ൟ ߜ

Similar to mass classification, the correspondence descriptors of each image pair were 
classified by a random-forest classifier using leave-one-patient-out cross validation. 
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The likelihood of a test candidate having a corresponding mass candidate in the other 
view was estimated by a dual-view score ௜ܵଶ = max௝൛ܥ௜௝ൟ.  

To estimate the spatial location of the candidate masses, a one-to-one correspond-
ence between pairs of candidates was derived by solving the linear assignment prob-

lem, minimizing ∑ ∑ (1 − ௜௝௝௜ݔ(௜௝ܥ  , where ݔ௜௝ = ൜1, ݂݅ ݉௜஼஼ ݅݋ݐ ݀݁݊݃݅ݏݏܽ ݏ ௝݉ெ௅ை0,                                    ݁ݏ݅ݓݎℎ݁ݐ݋
2.3 Evaluation Experiments 

Our analysis included 90 images from 43 patients. All selected images had a single 
annotated mass. In order to simplify the interpretation of the results, images with mul-
tiple mass annotations or cases with missing annotation in one of the views were ex-
cluded (18 images). For each image, unsupervised seed detection was applied, and 
candidate mass contours were generated from the 30 first seeds, ordered by the detec-
tion score, ௜ܵ଴. A seed that resided within the ground-truth contour was considered a 
true detection. The candidate contours were then ranked by computing the single-view 
score ௜ܵଵ , using leave-one-patient-out cross validation. The quality of the candidate 
contours was assessed by their Dice-index overlap with the ground-truth contours. The 
single-view detection performance was measured by the area under the receiver operat-
ing characteristic curve (AUROC) and the detection sensitivity at a false-positive rate 
(FPR) of 10%. Dual-view analysis was carried out using the first 10 mass candidates 
from each view. For each pair of CC-MLO images, the analysis consisted of classifi-
cation of correspondence descriptors, calculation of dual-view scores ௜ܵଶ and breast 
quadrant estimation, following one-to-one candidate assignment. The AUROC of the 
combined dual-view score ௜ܵଵ + ௜ܵଶ was compared to the single-view score, and the 
differences in detection sensitivity and specificity were assessed using McNemar’s 
chi-square test. 

3 Results 

Sorting the detected seeds by the unsupervised score ௜ܵ଴, a true detection was found 
within the first 30 seeds, 10 seeds and 1 seed in 96%, 79% and 37% of the images, 
respectively. The average Dice-index overlap between the best automatically detected 
candidate mass contour and the ground-truth mass contour was 0.8±0.2. This overlap 
was > 0.5 in 96% of the images. Candidate mass classification with ௜ܵ଴ achieved an 
AUROC of 0.71, with sensitivity of 36% at specificity of 90% (Fig 3). 

Following learning-based candidate ranking, the 10 highest-ranked candidates in-
cluded a true detection (Dice > 0.5) in 89% of the images. In 70% of the images the 
first-ranked candidate was a true detection, which corresponds to an average FPR of 
0.3 per image. With 2.2 false-positives per image, the detection sensitivity was 83%. 
The AUROC of candidate classification by the single-view score ௜ܵଵ  was 0.92  
(Fig. 3), with detection sensitivity of 72% at a specificity of 90%.  

Classification of the correspondence descriptors into true- and false pairwise 
matches provided an AUROC of 0.96, with optimal sensitivity and specificity of 89% 
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classifiers. Paquerault et al. [7] reported single-view sensitivity of 62%, with 1 false-
positive per image, while their two-view detection scheme increased the sensitivity to 
73%. Van Engeland et al. [3] used LDA to classify correct and incorrect pairs of sus-
picious mass regions. Using features such as difference of mass-nipple distances, 
contrast difference and histogram correlation, a correct pairing of true positive regions 
was found in 82% of the cases. Yuan et al. [4] applied a Bayesian artificial neural 
network to estimate the probability of correspondence between lesions from different 
views, reporting AUROC of 0.87. Velicova et al. [8] proposed a fixed Bayesian net-
work framework for modeling multi-view dependences, which increased the AUROC 
by 0.01 to 0.05. Recently, Kozegar et al. [19] assessed their mass detection method 
using INbreast mammograms. Their proposed ensemble of classifiers achieved sensi-
tivity of 87% at FPR of 3.67 per image. At a lower FPR of 0.5 per image, the sensitiv-
ity decreased to 32%. Our single-view analysis framework, based on a similar ap-
proach achieved 87% sensitivity at a lower FPR of 3.13 per image, and maintained a 
fair detection sensitivity of 70% at a low FPR of 0.3 per image. Fusing the dual-view 
correspondence score with the single-view ranking score boosted the detection per-
formance, reducing either the false-negative or the false-positive rate by more than 
half, compared to the single-view performance (Fig. 3). The pairwise correspondence 
classification was highly accurate, with AUROC of 0.96. These results strengthen the 
potential of the automated dual-view analysis. Our proposed approach also provided 
an estimation of the three-dimensional spatial location of the mass, based on deriving 
one-to-one correspondence between candidate masses. As breast quadrants have dif-
ferent likelihoods for incidence of cancer, accurate estimation of the quadrant may  
be useful for further semantic classification of the detected masses into benign or 
malignant lesions. 

While training a random forest classifier, the relative importance of each feature 
can be measured by randomly perturbing every variable and computing the average 
difference in accuracy. In our experiments, the most prominent features for two-view 
correspondence classification were the ratios of mass-nipple distances, mass areas, 
ellipse axis lengths, normalized distances to the center of the image, and earth  
mover’s distance between the local histograms. The proposed analysis framework is 
highly scalable in terms of the feature set used for single- and dual-view detection, 
enabling experimentation with new informative features, as well as with feature  
selection strategies. 

The use of INbreast FFDM database to assess the framework’s performance takes 
advantage of the detailed ground-truth mass annotations, which allows the definition 
of fine shape correspondences between annotated contours. Moreover, the major ben-
efit of using INbreast lies in its availability to the research community, allowing the 
use of standard benchmarking of mammogram analysis algorithms. A current limita-
tion of this dataset is its relatively-small number of mass-containing images. This 
limitation was addressed by evaluating the classifiers using leave-one-out cross vali-
dation. However, further validation of the method on additional datasets is needed. 
Another limitation of this work is the restriction of analysis to mammograms with a 
single annotated mass. A natural extension would be to evaluate the method on multi-
ple-mass images, as well as images with different numbers of masses in each view.  
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The proposed dual-view analysis framework could assist radiologists in decreasing 
their workload, by automatically indicating suspicious regions that require attention. 
Such fusion of human knowledge and computer algorithms bears a true promise for 
future cognitive systems in diagnostic radiology.  
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