Skip to main content

Fault Diagnosis via Fusion of Information from a Case Stream

  • Conference paper
  • First Online:
Case-Based Reasoning Research and Development (ICCBR 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9343))

Included in the following conference series:

  • 1036 Accesses

Abstract

This paper presents a novel approach to fault diagnosis applied to a stream of cases. The approach uses a combination of case-based reasoning and information fusion to do classification. The approach consists of two steps. First, we perform local anomaly detection on-board a machine to identify anomalous individual cases. Then, we monitor the stream of anomalous cases using a stream anomaly detector based on a sliding window approach. When the stream anomaly detector identifies an anomalous window, the anomalous cases in the window are classified using a CBR classifier. Thereafter, the individual classifications are aggregated into a composite case with a single prediction using a information fusion method. We compare three information fusion approaches: simple majority vote, weighted majority vote and Dempster-Shafer fusion. As baseline for comparison, we use the classification of the last identified anomalous case in the window as the aggregated prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Thanks to NASA for allowing us to use the Shuttle data sets.

References

  1. Isermann, R.: Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance. Springer, Heidelberg (2006)

    Book  Google Scholar 

  2. Bengtsson, M., Olsson, E., Funk, P., Jackson, M.: Technical design of condition based maintenance systems - a case study using sound analysis and case-based reasoning. In: 8th International Conference of Maintenance and Realiability, Knoxville, USA (2004)

    Google Scholar 

  3. Kockskamper, K., Traphoner, R., Wernicke, W., Faupcl, B.: Knowledge acquisition in the domain of cnc’machining centers: the moltke approach. In: EKAW 1989: Third European Workshop on Knowledge Acquisition for Knowledge-Based Systems, Paris, July 1989, p. 180. AFCET (1989)

    Google Scholar 

  4. Althoff, K., Maurer, F., Wess, S., Traphöner, R.: Moltke: an integrated workbench for fault diagnosis in engineering systems. In: Proceedings of the EXPERSYS 1992, Paris (1992)

    Google Scholar 

  5. Auriol, E., Crowder, R., McKendrick, R., Rowe, R., Knudsen, T.: Integrating case-based reasoning and hypermedia documentation: an application for the diagnosis of a welding robot at odense steel shipyard. Eng. Appl. Artif. Intell. 12(6), 691–703 (1999)

    Article  Google Scholar 

  6. Yang, B., Han, T., Kim, Y.: Integration of art-kohonen neural network and case-based reasoning for intelligent fault diagnosis. Expert Syst. Appl. 26(3), 387–395 (2004)

    Article  Google Scholar 

  7. Chougule, R., Rajpathak, D., Bandyopadhyay, P.: An integrated framework for effective service and repair in the automotive domain: an application of association mining and case-based-reasoning. Comput. Ind. 62(7), 742–754 (2011)

    Article  Google Scholar 

  8. Gupta, K.M., Aha, D.W., Moore, P.: Case-based collective inference for maritime object classification. In: McGinty, L., Wilson, D.C. (eds.) ICCBR 2009. LNCS, vol. 5650, pp. 434–449. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Domingos, P., Hulten, G.: Catching up with the data: research issues in mining data streams. In: Proceedings of the Workshop on Research Issues in Data Mining and Knowledge Discovery (2001)

    Google Scholar 

  10. Gama, J.: A survey on learning from data streams: current and future trends. Prog. Artif. Intell. 1(1), 45–55 (2012)

    Article  Google Scholar 

  11. Johanson, M., Belenki, S., Jalminger, J., Fant, M., Gjertz, M.: Big automotive data: Leveraging large volumes of data for knowledge-driven product development. In: 2014 IEEE International Conference on Big Data, pp. 736–741. IEEE (2014)

    Google Scholar 

  12. Olsson, T., Holst, A.: A probabilistic approach to aggregating anomalies for unsupervised anomaly detection with industrial applications. In: Proceedings of the Twenty-Eigth International Florida Artificial Intelligence Research Society Conference, May 2015

    Google Scholar 

  13. Olsson, T., Källström, E., Gillblad, D., Funk, P., Lindström, J., Håkansson, L., Lundin, J., Svensson, M., Larsson, J.: Fault diagnosis of heavy duty machines: automatic transmission clutches. In: Workshop on Synergies between CBR and Data Mining at 22nd International Conference on Case-Based Reasoning, September 2014

    Google Scholar 

  14. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  15. Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press, Cambridge (2012)

    MATH  Google Scholar 

  16. Kittler, J., Alkoot, F.M.: Sum versus vote fusion in multiple classifier systems. IEEE Trans. Pattern Anal. Mach. Intell. 25(1), 110–115 (2003)

    Article  Google Scholar 

  17. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  18. Smets, P.: Belief functions. In: Smets, P., et al. (eds.) Non-Standard Logics for automated Reasoning, pp. 253–286. Academic Press, San Diego (1988)

    Google Scholar 

  19. Bache, K., Lichman, M.: UCI machine learning repository (2013)

    Google Scholar 

  20. Steel Plates Faults Data Set. Source: Semeion, Research Center of Sciences of Communication, Rome, Italy. www.semeion.it: https://archive.ics.uci.edu/ml/datasets/Steel+Plates+Faults. Accessed July 2015

  21. Albanese, D., Filosi, M., Visintainer, R., Riccadonna, S., Jurman, G., Furlanello, C.: minerva and minepy: a C engine for the MINE suite and its R, Python and MATLAB wrappers. Bioinformatics 29(3), 407–408 (2013)

    Article  Google Scholar 

  22. pyDS: a python library for performing calculations in the dempster-shafer theory of evidence (2014). https://github.com/reineking/pyds

  23. Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Mach. Learn. 36(1–2), 105–139 (1999)

    Article  Google Scholar 

  24. Kuncheva, L.I.: A theoretical study on six classifier fusion strategies. IEEE Trans. Pattern Anal. Mach. Intell. 24(2), 281–286 (2002)

    Article  Google Scholar 

  25. Al-Ani, A., Deriche, M.: A new technique for combining multiple classifiers using the Dempster-Shafer theory of evidence. J. Artif. Intell. Res. 17, 333–361 (2002)

    MathSciNet  MATH  Google Scholar 

  26. Basir, O., Yuan, X.: Engine fault diagnosis based on multi-sensor information fusion using Dempster-Shafer evidence theory. Inf. Fusion 8(4), 379–386 (2007)

    Article  Google Scholar 

  27. Yang, G.Z., Andreu-Perez, J., Hu, X., Thiemjarus, S.: Multi-sensor fusion. In: Yang, G.Z. (ed.) Body Sensor Networks, pp. 301–354. Springer, London (2014)

    Chapter  Google Scholar 

  28. Wen, Z., Crossman, J., Cardillo, J., Murphey, Y.: Case-base reasoning in vehicle fault diagnostics. In: Proceedings of the International Joint Conference on Neural Networks, vol. 4, pp. 2679–2684. IEEE (2003)

    Google Scholar 

  29. Bach, K., Althoff, K.-D., Newo, R., Stahl, A.: A case-based reasoning approach for providing machine diagnosis from service reports. In: Ram, A., Wiratunga, N. (eds.) ICCBR 2011. LNCS, vol. 6880, pp. 363–377. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  30. Heider, R.: Troubleshooting CFM 56–3 engines for the Boeing 737 using CBR and data-mining. In: Smith, I., Faltings, B.V. (eds.) EWCBR 1996. LNCS, vol. 1168, pp. 512–518. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  31. Olsson, E., Funk, P., Xiong, N.: Fault diagnosis in industry using sensor readings and case-based reasoning. J. Intell. Fuzzy Syst. 15(1), 41–46 (2004)

    Google Scholar 

  32. Yousuf, A., Cheetham, W.: Case-based reasoning for turbine trip diagnostics. In: Agudo, B.D., Watson, I. (eds.) ICCBR 2012. LNCS, vol. 7466, pp. 458–468. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  33. Bifet, A., Gavaldá, R.: Learning from time-changing data with adaptive windowing. In: Proceedings of the 2007 SIAM International Conference on Data Mining, Society for Industrial and Applied Mathematics, p. 443 (2007)

    Google Scholar 

  34. Baena, M., del Campo, J., Fidalgo, R., Bifet, A., Gavaldà, R., Morales, R.: Early drift detection method. In: Fourth International Workshop on Knowledge Discovery from Data Streams (2006)

    Google Scholar 

  35. Maclin, R., Opitz, D.: Popular ensemble methods: an empirical study. J. Artifi. Intell. Res. 11, 169–198 (1999)

    MATH  Google Scholar 

  36. Olsson, T., Gillblad, D., Funk, P., Xiong, N.: Explaining probabilistic fault diagnosis and classification using case-based reasoning. In: Lamontagne, L., Plaza, E. (eds.) ICCBR 2014. LNCS, vol. 8765, pp. 360–374. Springer, Heidelberg (2014)

    Google Scholar 

  37. Cunningham, P.: A taxonomy of similarity mechanisms for case-based reasoning. IEEE Trans. Knowl. Data Eng. 21(11), 1532–1543 (2009)

    Article  Google Scholar 

  38. SMART VORTEX: scalable semantic product data stream management for collaboration and decision making in engineering. http://www.smartvortex.eu/. Accessed July 2015

  39. KK-Stiftelse: Swedish Knowledge Foundation: http://www.kks.se. Accessed July 2015

Download references

Acknowledgements

This work has been partially supported by the FP7 EU Large scale Integrating Project SMART VORTEX co-financed by the European Union [38], the Swedish Knowledge Foundation (KK-stiftelsen) [39] through ITS-EASY Research School and Swedish Governmental Agency for Innovation Systems (VINNOVA) grant no 10020, grant no 2012- 01277 and JU grant no 100266.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomas Olsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Olsson, T., Xiong, N., Källström, E., Holst, A., Funk, P. (2015). Fault Diagnosis via Fusion of Information from a Case Stream. In: Hüllermeier, E., Minor, M. (eds) Case-Based Reasoning Research and Development. ICCBR 2015. Lecture Notes in Computer Science(), vol 9343. Springer, Cham. https://doi.org/10.1007/978-3-319-24586-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24586-7_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24585-0

  • Online ISBN: 978-3-319-24586-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics