Skip to main content

Multidimensional Modelling from Open Data for Precision Agriculture

  • Conference paper
  • First Online:
Enterprise and Organizational Modeling and Simulation (EOMAS 2015)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 231))

Included in the following conference series:

  • 696 Accesses

Abstract

The multidimensional data models are most often used for decision support in Business Intelligence field. This paper presents innovative approach for support of knowledge analysis in precision agriculture, where such analytical approach offers great potential for the future. Corner stone of our approach is the creation of knowledge rules based on open data and information available from inside a particular agricultural company. In the next step such explicit knowledge is transformed into multidimensional database and an analytical model for decision support of the farm’s managers is designed. Our approach is demonstrated on example concerning knowledge analysis of one of the agricultural problems – infestation of farm plants by aphids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sauter, V.L.: Decision Support Systems for business intelligence. Wiley, New York (2014)

    MATH  Google Scholar 

  2. Fisher, D., Drucker, S., Czerwinski, M.: Business intelligence analytics. Comput. Graph. Appl. 34(5), 22–24 (2014)

    Article  Google Scholar 

  3. Tyrychtr, J., Ulman, M., Vostrovský, V.: Evaluation of the state of the business intelligence among small czech farms. Agric. Econ. 61(2), 63–71 (2015)

    Google Scholar 

  4. Feigenbaum, E.A.: The art of artificial intelligence. 1. Themes and case studies of knowledge engineering, Stanford Univ CA Dept of Computer Science (1977)

    Google Scholar 

  5. Feigenbaum, E., Mccorduck, P.: The Fifth Generation: Artificial Intelligence and Japan’s Challenge to the World (1983)

    Google Scholar 

  6. Charvat, K., Esbri, M.A., Mayer, W., Campos, A., Palma, R., Krivanek, Z.: FOODIE—Open data for agriculture, In: IST-Africa Conference Proceedings (2014)

    Google Scholar 

  7. Lausch, A., Schmidt, A., Tischndorf, L.: Data mining and linked open data – New perspectives for data analysis in environmental research. Ecol. Model. 295, 5–17 (2015)

    Article  Google Scholar 

  8. Piedra, N., Tovar, E., Colomo-Palacios, R., Lopez-Vargas, J., Chicaiza, J.A.: Consuming and producing linked open data: the case of OpenCourseWare. Program: Electron. Libr. Inf. Syst. 48(1), 16–40 (2014)

    Article  Google Scholar 

  9. Rysová, H., Kubata, K., Tyrychtr, J., Ulman, M., Šmejkalová, M., Vostrovský, V.: Evaluation of electronic public services in agriculture in the Czech Republic. Acta Univ. Agriculturae et Silviculturae Mendelianae Brunensis 61(2), 437–479 (2013)

    Article  Google Scholar 

  10. Fonkam, M.: On a Composite Formal-ism and Approach to Presenting the Knowledge Content of a Relational Database. In: Advances in Artificial Intelligence, pp. 274–284 (1995)

    Google Scholar 

  11. Hawryszkiewycz, I.: Knowledge Management: Organizing Knowledge Based Enter-prises, Palgrave Macmillan P (2009)

    Google Scholar 

  12. Vaníček, J., Vostrovský, V.: Knowledge acquisition from agricultural data-bases. Sci. Agriculturae Bohemica 39, 82–85 (2008)

    Google Scholar 

  13. Pankowski, T.: Using Da-ta-to-Knowledge exchange for transforming relational databases to knowledge bases. Rules on the Web Res. Appl. 7438, 256–263 (2012)

    Article  Google Scholar 

  14. Abelló A., Romero, O.: On-Line Analytical Processing. In: Liu, L., Özsu, M.T. (eds.), pp. 1949–1954. Springer (2009)

    Google Scholar 

  15. Pedersen, T.: Cube. In: Liu, L., Özsu, M.T. (eds.) Dictionary of Gems and Gemology, pp. 538–539. Springer, US (2009a)

    Google Scholar 

  16. Vassiliadis, P., Sellis, T.: A survey of logical models for OLAP databases. ACM SIGMOD Rec. 28, 64–69 (1999)

    Article  Google Scholar 

  17. Pedersen, T., Dimension, L.L., Özsu, M.T. (eds.) p. 836. Springer US (2009b)

    Google Scholar 

  18. Mendoza, M., Alegría, E., Maca, M., Cobos, C., León, E.: Multidimensional analysis model for a document warehouse that includes textual measures. Decis. Support Syst. 72, 44–59 (2015)

    Article  Google Scholar 

  19. Datta, A., Thomas, H.: The cube data model: a conceptual model and algebra for on-line analytical processing in data warehouses. Decis. Support Syst. 27(3), 298–301 (1999)

    Article  Google Scholar 

  20. Khan, A.: SAP and BW Data Warehousing: How to Plan and Implement, Khan Consulting and Publishing, LLC (2005)

    Google Scholar 

  21. Tyrychtr, J.: Provozní a analytické databáze, Praha: ČSVIZ (2015). http://www.csviz.cz/kniha-provozni-a-analyticke-databaze/

  22. Pedersen, T.: Multidimensional Modeling. In: Liu, L., Özsu, M.T. (eds.) pp. 1777–1784. Springer US (2009)

    Google Scholar 

  23. Wu, M., Buchmann, A.: Research Issues in Data Warehousing, Ulm, Germany (1997)

    Google Scholar 

  24. Chaudhuri, S., Dayal, U.: An Overview of Data Warehousing and OLAP Technology, vol. 26, pp. 65–74 (1997)

    Google Scholar 

  25. Ballard, C., Herreman, D., Schauer, D., Bell, R., Kim, E., Valencic, A.: Data Modeling Techniques for Data Warehousing, l, IBM International Technical Support Organization (1998)

    Google Scholar 

  26. McGuff, F.: Designing the Perfect Data Warehouse (1998). http://members.aol.com/fmcguff/dwmodel/index.htm

  27. Boehnlein, M., Ende, A.: Deriving initial data warehouse structures from the conceptual data models of the underlying operational information systems, Kansas City, USA (1999)

    Google Scholar 

  28. Abdelhédi, F., Zurfluh, G.: User Support System for Designing Decisional Database, Nice, France: IARIA (2013)

    Google Scholar 

  29. Levene, M., Loizou, G.: Why is the snowflake schema a good data warehouse design? Inf. Systems 28, 225–240 (2003)

    Article  Google Scholar 

  30. Edwards, M.: Best practices in data warehousing award winners, Bus. Intell. J. 6(4) (2001)

    Google Scholar 

  31. Elbashir, M.Z., Collier, P.A., Davern, M.J.: Measuring the effects of business intelligence systems: the relationship between business process and organizational performance. Int. J. Account. Inf. Syst. 9(3), 135–153 (2008)

    Article  Google Scholar 

  32. Popovič, A., Hackney, R., Coelho, P.S., Jaklič, J.: Towards business intelligence systems success: Effects of maturity and culture on. Decis. Support Syst. 54, 729–739 (2012)

    Article  Google Scholar 

  33. Vostrovský, V., Tyrychtr, J., Ulman, M.: Knowledge support of information and communication technology in agricultural enterprises in the Czech Republic. Acta Univ. Agric. Silvic. Mendel. Brun. 63(1), 327–336 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The results and knowledge included herein have been obtained owing to support from the IGA of the Faculty of Economics and Management, Czech University of Life Sciences in Prague, grant No. 20141040, “New methods for support of managers in agriculture”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Tyrychtr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Tyrychtr, J., Brožek, J., Vostrovský, V. (2015). Multidimensional Modelling from Open Data for Precision Agriculture. In: Barjis, J., Pergl, R., Babkin, E. (eds) Enterprise and Organizational Modeling and Simulation. EOMAS 2015. Lecture Notes in Business Information Processing, vol 231. Springer, Cham. https://doi.org/10.1007/978-3-319-24626-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24626-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24625-3

  • Online ISBN: 978-3-319-24626-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics