Skip to main content

Accelerating Deformable Part Models with Branch-and-Bound

  • Conference paper
  • First Online:
Perspectives in Shape Analysis

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

  • 1443 Accesses

Abstract

Deformable Part Models (DPMs) play a prominent role in current object recognition research, as they rigorously model the shape variability of an object category by breaking an object into parts and modelling the relative locations of the parts. Still, inference with such models requires solving a combinatorial optimization task. In this chapter, we will see how Branch-and-Bound can be used to efficiently perform inference with such models. Instead of evaluating the classifier score exhaustively for all part locations and scales, such techniques allow us to quickly focus on promising image locations. The core problem that we will address is how to compute bounds that accommodate part deformations; this allows us to apply Branch-and-Bound to our problem. When comparing to a baseline DPM implementation, we obtain exactly the same results but can perform the part combination substantially faster, yielding up to tenfold speedups for single object detection, or even higher speedups for multiple objects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In our comparisons we use the original- and faster-GDT algorithm of [11] instead of the one provided in [17].

References

  1. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. PAMI 24 (4), 509–522 (2002)

    Article  Google Scholar 

  2. Boussaid, H., Kokkinos, I.: Fast and exact: ADMM-based discriminative shape segmentation with loopy part models. In: CVPR, Columbus (2014)

    Google Scholar 

  3. Boussaid, H., Kokkinos, I., Paragios, N.: Rapid mode estimation for 3D brain MRI tumor segmentation. In: Energy Minimization Methods in Computer Vision and Pattern Recognition, Lund (2013)

    Book  MATH  Google Scholar 

  4. Chen, Y., Zhu, L., Lin, C., Yuille, A.L., Zhang, H.: Rapid inference on a novel AND/OR graph for object detection, segmentation and parsing. In: Proceedings of NIPS, Vancouver (2007)

    Google Scholar 

  5. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of CVPR, San Diego (2005)

    Book  Google Scholar 

  6. Dean, T., Ruzon, M., Segal, M., Shlens, J., Vijayanarasimhan, S., Yagnik, J.: Fast, accurate detection of 100,000 object classes on a single machine. In: Proceedings of CVPR, Portland (2013)

    Google Scholar 

  7. Dubout, C., Fleuret, F.: Exact acceleration of linear object detectors. In: ECCV (3), Florence (2012)

    Google Scholar 

  8. Felzenszwalb, P., Huttenlocher, D.: Pictorial structures for object recognition. Int. J. Comput. Vis. 61 (1), 55–79 (2005)

    Article  Google Scholar 

  9. Felzenszwalb, P., McAllester, D., Ramanan, D.: A discriminatively trained, multiscale, deformable part model. In: Proceedings of CVPR, Anchorage (2008)

    Book  Google Scholar 

  10. Felzenszwalb, P.F., Girshick, R.B., McAllester, D.A.: Cascade object detection with deformable part models. In: Proceedings of CVPR, San Francisco (2010)

    Book  Google Scholar 

  11. Felzenszwalb, P.F., Huttenlocher, D.P.: Distance transforms of sampled functions. Technical report, Cornell CS (2004)

    MATH  Google Scholar 

  12. Fergus, R., Perona, P., Zisserman, A.: Object class recognition by unsupervised scale-invariant learning. In: Proceedings of CVPR, Madison (2003)

    Book  Google Scholar 

  13. Ferrari, V., Marin-Jimenez, M.J., Zisserman, A.: Progressive search space reduction for human pose estimation. In: Proceedings of CVPR, Anchorage (2008)

    Book  Google Scholar 

  14. Fleuret, F., Geman, D.: Coarse-to-fine face detection. Int. J. Comput. Vis. 41 (1/2), 85–107 (2001)

    Article  MATH  Google Scholar 

  15. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of CVPR, Columbus (2014)

    Book  Google Scholar 

  16. Girshick, R., Iandola, F., Darrell, T., Malik, J.: Deformable part models are convolutional neural networks. arXiv preprint arXiv:1409.5403 (2014)

    Google Scholar 

  17. Girshick, R.B., Felzenszwalb, P.F., McAllester, D.: Discriminatively trained deformable part models, release 5. http://people.cs.uchicago.edu/~rbg/latent-release5/

  18. Gray, A.G., Moore, A.W.: Nonparametric density estimation: toward computational tractability. In: SIAM International Conference on Data Mining, San Francisco (2003)

    Google Scholar 

  19. Grimson, W.E.L.: Object Recognition by Computer: The Role of Geometric Constraints. MIT Press, Cambridge, MA (1990). ISBN:0-262-07130-4. http://dl.acm.org/citation.cfm?id=102900

    Google Scholar 

  20. Huttenlocher, D., Klanderman, G., Rucklidge, W.: Comparing images using the Hausdorff distance. IEEE Trans. PAMI 15 (9), 850–863 (1993)

    Article  Google Scholar 

  21. Ihler, A., Sudderh, E., Freeman, W., Willsky, A.: Efficient multiscale sampling from products of Gaussian mixtures. In: Proceedings of NIPS, Vancouver (2003)

    Google Scholar 

  22. Ihler, A., Sudderth, E., Freeman, W., Willsky, A.: Efficient sampling of Gaussian distributions. In: Proceedings of NIPS, Vancouver (2004)

    Google Scholar 

  23. Jordan, M.: Graphical models. Stat. Sci. 19, 140–155 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kokkinos, I.: Rapid deformable object detection using dual-tree branch-and-bound. In: Proceedings of NIPS, Granada (2011)

    Google Scholar 

  25. Kokkinos, I.: Bounding part scores for rapid detection with deformable part models. In: 2nd Parts and Attributes Workshop, in Conjunction with ECCV 2012, Florence (2012)

    Google Scholar 

  26. Kokkinos, I.: Shufflets: shared mid-level parts for fast multi-category detection. In: ICCV – International Conference on Computer Vision, Sydney (2013)

    Google Scholar 

  27. Kokkinos, I., Yuille, A.: Inference and learning with hierarchical shape models. Int. J. Comput. Vis. 93, 201–225 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional neural networks. In: Proceedings of NIPS, Lake Tahoe (2012)

    Google Scholar 

  29. Lampert, C., Blaschko, M., Hofmann, T.: Beyond sliding windows: object localization by efficient subwindow search. In: Proceedings of CVPR, Anchorage (2008)

    Google Scholar 

  30. Lampert, C.H.: An efficient divide-and-conquer cascade for nonlinear object detection. In: Proceedings of CVPR, San Francisco (2010)

    Book  Google Scholar 

  31. Lehmann, A., Leibe, B., Gool, L.V.: Fast PRISM: branch and bound hough transform for object class detection. Int. J. Comput. Vis. 94 (2), 175–197 (2011)

    Article  MATH  Google Scholar 

  32. Lempitsky, V., Blake, A., Rother, C.: Image segmentation by branch-and-mincut. In: Proceedings of ECCV, Marseille (2008)

    Book  MATH  Google Scholar 

  33. Lowe, D.: Perceptual Organization and Visual Recognition. Kluwer, Boston (1985)

    Book  Google Scholar 

  34. Lowe, D.: Object recognition from local scale-invariant features. In: Proceedings of ICCV, Kerkyra (1999)

    Book  Google Scholar 

  35. Moreels, P., Maire, M., Perona, P.: Recognition by probabilistic hypothesis construction. In: Proceedings of ECCV, Prague, p. 55 (2004)

    Google Scholar 

  36. Mundy, J.L., Zisserman, A. (eds.): Geometric invariance in computer vision. MIT Press, Cambridge (1992)

    Google Scholar 

  37. Savalle, P.-A., Tsogkas, S., Papandreou, G., Kokkinos, I.: Deformable part models with CNN features. In: 3rd Parts and Attributes Workshop, ECCV, Zurich (2014)

    Google Scholar 

  38. Papandreou, G., Kokkinos, I., Savalle, P.A.: Untangling local and global deformations in deep convolutional networks for image classification and sliding window detection. arXiv (2014)

    Google Scholar 

  39. Pedersoli, M., Vedaldi, A., GonzĂ lez, J.: A coarse-to-fine approach for fast deformable object detection. In: Proceedings of CVPR, Colorado Springs (2011)

    Book  Google Scholar 

  40. Pirsiavash, H., Ramanan, D.: Steerable part models. In: CVPR, Providence (2012)

    Book  Google Scholar 

  41. Sadeghi, M.A., Forsyth, D.A.: Fast template evaluation with vector quantization. In: NIPS, Lake Tahoe (2013)

    Google Scholar 

  42. Sadeghi, M.A., Forsyth, D.A.: 30 hz object detection with DPM V5. In: ECCV, Zurich (2014)

    Google Scholar 

  43. Sapp, B., Toshev, A., Taskar, B.: Cascaded models for articulated pose estimation. In: Proceedings of ECCV, Heraklion (2010)

    Book  Google Scholar 

  44. Song, H.O., Zickler, S., Althoff, T., Girshick, R.B., Fritz, M., Geyer, C., Felzenszwalb, P.F., Darrell, T.: Sparselet models for efficient multiclass object detection. In: Proceedings of ECCV, Florence (2012)

    Book  Google Scholar 

  45. Trulls, E., Tsogkas, S., Kokkinos, I., Sanfeliu, A., Moreno-Noguer, F.: Segmentation-aware deformable part models. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014, Columbus, 23–28 June, pp. 168–175 (2014)

    Google Scholar 

  46. Vedaldi, A., Zisserman, A.: Sparse kernel approximations for efficient classification and detection. In: Proceedings of CVPR, Providence (2012)

    Book  Google Scholar 

  47. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Kauai (2001)

    Google Scholar 

  48. Wan, L., Eigen, D., Fergus, R.: End-to-end integration of a convolutional network, deformable parts model and non-maximum suppression. arXiv (2014)

    Google Scholar 

  49. Weber, M., Welling, M., Perona, P.: Unsupervised learning of models for recognition. In: Proceedings of ECCV, Dublin (2000)

    Book  Google Scholar 

  50. Yang, Y., Ramanan, D.: Articulated human detection with flexible mixtures of parts. IEEE Trans. Pattern Anal. Mach. Intell. 35 (12), 2878–2890 (2013)

    Article  Google Scholar 

  51. Zhu, S.C., Mumford, D.: Quest for a stochastic grammar of images. Found. Trends Comput. Graph. Vis. 2 (4), 259–362 (2007)

    Article  MATH  Google Scholar 

  52. Zhu, X., Ramanan, D.: Face detection, pose estimation, and landmark localization in the wild. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, 16–21 June, pp. 2879–2886 (2012)

    Google Scholar 

  53. Zisserman, A., Forsyth, D.A., Mundy, J.L., Rothwell, C.A., Liu, J., Pillow, N.: 3D object recognition using invariance. Artif. Intell. 78, 239–288 (1995)

    Article  Google Scholar 

Download references

Acknowledgements

I thank the two anonymous reviewers and Stefan Kinauer for feedback that helped improve this manuscript. I am grateful to the authors of [7, 10, 22, 29, 30] for making their code available. This work was funded by grants ANR-10-JCJC-0205 and FP7-Reconfig.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iasonas Kokkinos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Kokkinos, I. (2016). Accelerating Deformable Part Models with Branch-and-Bound. In: BreuĂź, M., Bruckstein, A., Maragos, P., Wuhrer, S. (eds) Perspectives in Shape Analysis. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-24726-7_12

Download citation

Publish with us

Policies and ethics