Skip to main content

Shape Distances for Binary Image Segmentation

  • Conference paper
  • First Online:
Perspectives in Shape Analysis

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

  • 1485 Accesses

Abstract

Shape distances are an important measure to guide the task of shape classification. In this chapter we show that the right choice of shape similarity is also important for the task of image segmentation, even at the absence of any shape prior. To this end, we will study three different shape distances and explore how well they can be used in a trust region framework. In particular, we explore which distance can be easily incorporated into trust region optimization and how well these distances work for theoretical and practical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Since we are only interested in the minimizer, we removed constant terms from the energy.

References

  1. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. PAMI 26 (9), 1124–1137 (2004)

    Article  MATH  Google Scholar 

  2. Boykov, Y., Kolmogorov, V., Cremers, D., Delong, A.: An integral solution to surface evolution PDEs via Geo-Cuts. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) European Conference on Computer Vision. LNCS, vol. 3953, pp. 409–422. Springer, Graz (2006)

    Google Scholar 

  3. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. PAMI 23 (11), 1222–1239 (2001)

    Article  Google Scholar 

  4. Brox, T., Rousson, M., Deriche, R., Weickert, J.: Unsupervised segmentation incorporating colour, texture, and motion. In: Petkov, N., Westenberg, M.A. (eds.) Computer Analysis of Images and Patterns. LNCS, vol. 2756, pp. 353–360. Springer, Groningen (2003)

    Chapter  Google Scholar 

  5. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40 (1), 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chan, T., Esedoḡlu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66 (5), 1632–1648 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cremers, D., Osher, S.J., Soatto, S.: Kernel density estimation and intrinsic alignment for shape priors in level set segmentation. Int. J. Comput. Vis. 69 (3), 335–351 (2006)

    Article  Google Scholar 

  8. Cremers, D., Schmidt, F.R., Barthel, F.: Shape priors in variational image segmentation: convexity, Lipschitz continuity and globally optimal solutions. In: IEEE International Conference on Computer Vision and Pattern Recognition, Anchorage (2008)

    Google Scholar 

  9. Cremers, D., Soatto, S.: A pseudo-distance for shape priors in level set segmentation. In: Paragios, N. (ed.) IEEE 2nd International Workshop on Variational, Geometric and Level Set Methods, Nice, pp. 169–176 (2003)

    Google Scholar 

  10. Delong, A., Gorelick, L., Schmidt, F.R., Veksler, O., Boykov, Y.: Interactive segmentation with super-labels. In: International Conference on Energy Minimization Methods for Computer Vision and Pattern Recognition. LNCS, vol. 6819, pp. 147–162. Springer, Saint Petersburg (2011)

    Google Scholar 

  11. Delong, A., Osokin, A., Isack, H.N., Boykov, Y.: Fast approximate energy minimization with label costs. Int. J. Comput. Vis. 96 (1), 1–27 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gao, T., Koller, B.P.D.: A segmentation-aware object detection model with occlusion handling. In: IEEE International Conference on Computer Vision and Pattern Recognition, Colorado Springs, pp. 1361–1368 (2011)

    Google Scholar 

  13. Gorelick, L., Ayed, I.B., Schmidt, F.R., Boykov, Y.: An experimental comparison of trust region and level sets. arXiv http://arxiv.org/abs/1311.2102 (2013)

  14. Gorelick, L., Schmidt, F.R., Boykov, Y.: Fast trust region for segmentation. In: IEEE International Conference on Computer Vision and Pattern Recognition, Portland (2013)

    Book  Google Scholar 

  15. Leventon, M., Grimson, W., Faugeras, O.: Statistical shape influence in geodesic active contours. In: IEEE International Conference on Computer Vision and Pattern Recognition, Hilton Head Island, vol. 1, pp. 316–323 (2000)

    Google Scholar 

  16. Li, C., Xu, C., Gui, C., Fox, M.D.: Level set evolution without re-initialization: a new variational formulation. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 430–436 (2005)

    Google Scholar 

  17. Ling, H., Jacobs, D.W.: Shape classification using the innerdistance. IEEE Trans. PAMI 29 (02), 286–299 (2007)

    Article  Google Scholar 

  18. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42, 577–685 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  19. Nieuwenhuis, C., Strekalovskiy, E., Cremers, D.: Proportion priors for image sequence segmentation. In: IEEE International Conference on Computer Vision, Sydney, pp. 1769–1776 (2013)

    Google Scholar 

  20. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, Berlin (2006)

    MATH  Google Scholar 

  21. Osher, S.J., Sethian, J.A.: Fronts propagation with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rousson, M., Paragios, N.: Shape priors for level set representations. In: Heyden, A., et al. (eds.) European Conference on Computer Vision, Copenhagen. LNCS, vol. 2351, pp. 78–92. Springer (2002)

    Google Scholar 

  23. Schmidt, F.R., Boykov, Y.: Hausdorff distance constraint for multi-surface segmentation. In: European Conference on Computer Vision. LNCS, vol. 7572, pp. 598–611. Springer, Florence (2012)

    Google Scholar 

  24. Soares, J.V.B., Cesar, J.J.G.L.R.M., Jelinek, H.F., Cree, M.J.: Retinal vessel segmentation using the 2-d gabor wavelet and supervised classification. IEEE Trans. Med. Imaging 25 (9), 1214–1222 (2006)

    Article  Google Scholar 

  25. Tang, M., Gorelick, L., Veksler, O., Boykov, Y.: Grabcut in one cut. In: IEEE International Conference on Computer Vision, Sydney, pp. 1769–1776 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank R. Schmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Schmidt, F.R., Gorelick, L., Ayed, I.B., Boykov, Y., Brox, T. (2016). Shape Distances for Binary Image Segmentation. In: Breuß, M., Bruckstein, A., Maragos, P., Wuhrer, S. (eds) Perspectives in Shape Analysis. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-24726-7_6

Download citation

Publish with us

Policies and ethics