Abstract
Shape distances are an important measure to guide the task of shape classification. In this chapter we show that the right choice of shape similarity is also important for the task of image segmentation, even at the absence of any shape prior. To this end, we will study three different shape distances and explore how well they can be used in a trust region framework. In particular, we explore which distance can be easily incorporated into trust region optimization and how well these distances work for theoretical and practical examples.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Since we are only interested in the minimizer, we removed constant terms from the energy.
References
Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. PAMI 26 (9), 1124–1137 (2004)
Boykov, Y., Kolmogorov, V., Cremers, D., Delong, A.: An integral solution to surface evolution PDEs via Geo-Cuts. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) European Conference on Computer Vision. LNCS, vol. 3953, pp. 409–422. Springer, Graz (2006)
Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. PAMI 23 (11), 1222–1239 (2001)
Brox, T., Rousson, M., Deriche, R., Weickert, J.: Unsupervised segmentation incorporating colour, texture, and motion. In: Petkov, N., Westenberg, M.A. (eds.) Computer Analysis of Images and Patterns. LNCS, vol. 2756, pp. 353–360. Springer, Groningen (2003)
Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40 (1), 120–145 (2011)
Chan, T., Esedoḡlu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66 (5), 1632–1648 (2006)
Cremers, D., Osher, S.J., Soatto, S.: Kernel density estimation and intrinsic alignment for shape priors in level set segmentation. Int. J. Comput. Vis. 69 (3), 335–351 (2006)
Cremers, D., Schmidt, F.R., Barthel, F.: Shape priors in variational image segmentation: convexity, Lipschitz continuity and globally optimal solutions. In: IEEE International Conference on Computer Vision and Pattern Recognition, Anchorage (2008)
Cremers, D., Soatto, S.: A pseudo-distance for shape priors in level set segmentation. In: Paragios, N. (ed.) IEEE 2nd International Workshop on Variational, Geometric and Level Set Methods, Nice, pp. 169–176 (2003)
Delong, A., Gorelick, L., Schmidt, F.R., Veksler, O., Boykov, Y.: Interactive segmentation with super-labels. In: International Conference on Energy Minimization Methods for Computer Vision and Pattern Recognition. LNCS, vol. 6819, pp. 147–162. Springer, Saint Petersburg (2011)
Delong, A., Osokin, A., Isack, H.N., Boykov, Y.: Fast approximate energy minimization with label costs. Int. J. Comput. Vis. 96 (1), 1–27 (2012)
Gao, T., Koller, B.P.D.: A segmentation-aware object detection model with occlusion handling. In: IEEE International Conference on Computer Vision and Pattern Recognition, Colorado Springs, pp. 1361–1368 (2011)
Gorelick, L., Ayed, I.B., Schmidt, F.R., Boykov, Y.: An experimental comparison of trust region and level sets. arXiv http://arxiv.org/abs/1311.2102 (2013)
Gorelick, L., Schmidt, F.R., Boykov, Y.: Fast trust region for segmentation. In: IEEE International Conference on Computer Vision and Pattern Recognition, Portland (2013)
Leventon, M., Grimson, W., Faugeras, O.: Statistical shape influence in geodesic active contours. In: IEEE International Conference on Computer Vision and Pattern Recognition, Hilton Head Island, vol. 1, pp. 316–323 (2000)
Li, C., Xu, C., Gui, C., Fox, M.D.: Level set evolution without re-initialization: a new variational formulation. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 430–436 (2005)
Ling, H., Jacobs, D.W.: Shape classification using the innerdistance. IEEE Trans. PAMI 29 (02), 286–299 (2007)
Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42, 577–685 (1989)
Nieuwenhuis, C., Strekalovskiy, E., Cremers, D.: Proportion priors for image sequence segmentation. In: IEEE International Conference on Computer Vision, Sydney, pp. 1769–1776 (2013)
Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, Berlin (2006)
Osher, S.J., Sethian, J.A.: Fronts propagation with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)
Rousson, M., Paragios, N.: Shape priors for level set representations. In: Heyden, A., et al. (eds.) European Conference on Computer Vision, Copenhagen. LNCS, vol. 2351, pp. 78–92. Springer (2002)
Schmidt, F.R., Boykov, Y.: Hausdorff distance constraint for multi-surface segmentation. In: European Conference on Computer Vision. LNCS, vol. 7572, pp. 598–611. Springer, Florence (2012)
Soares, J.V.B., Cesar, J.J.G.L.R.M., Jelinek, H.F., Cree, M.J.: Retinal vessel segmentation using the 2-d gabor wavelet and supervised classification. IEEE Trans. Med. Imaging 25 (9), 1214–1222 (2006)
Tang, M., Gorelick, L., Veksler, O., Boykov, Y.: Grabcut in one cut. In: IEEE International Conference on Computer Vision, Sydney, pp. 1769–1776 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Schmidt, F.R., Gorelick, L., Ayed, I.B., Boykov, Y., Brox, T. (2016). Shape Distances for Binary Image Segmentation. In: Breuß, M., Bruckstein, A., Maragos, P., Wuhrer, S. (eds) Perspectives in Shape Analysis. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-24726-7_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-24726-7_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24724-3
Online ISBN: 978-3-319-24726-7
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)