Skip to main content

Application of Intelligent Algorithm to Solve the Fractional Heat Conduction Inverse Problem

  • Conference paper
  • First Online:
Information and Software Technologies (ICIST 2015)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 538))

Included in the following conference series:

Abstract

This paper describes an application of an intelligent algorithm to reconstruct the boundary condition of second kind in the heat conduction equation of fractional order. For this purpose, a functional defining error of approximate solution was minimized. To minimize this functional Ant Colony Optimization (ACO) algorithm was used. Calculations has been performed in parallel way (multi-threaded), so the computation time is significantly shortened. The paper presents examples to illustrate the accuracy and stability of the presented algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Ardakani, M., Khodadad, M.: Identification of thermal conductivity and the shape of an inclusion using the boundary elements method and the particle swarm optimization algorithm. Inverse Prob. Sci. Eng. 17, 855–870 (2009)

    Article  MathSciNet  Google Scholar 

  2. Carvalho, A.R., Velho, H.F.D.C., Stephany, S., Souto, R.P., Sandri, J.C.B.S.: Fuzzy ant colony optimization for estimating chlorophyll concentration profile in offshore sea water. Inverse Prob. Sci. Eng. 16, 705–715 (2008)

    Article  MathSciNet  Google Scholar 

  3. dos Santos, A., de Campos, V.H., Luz, E., Freitas, S., Grell, G., Gan, M.: Firefly optimization to determine the precipitation field on South America. Inverse Prob. Sci. Eng. 21, 451–466 (2013)

    Article  Google Scholar 

  4. Hetmaniok, E., Nowak, I., Słota, D., Zielonka, A.: Determination of optimal parameters for the immune algorithm used for solving inverse heat conduction problems with and without a phase change. Numer. Heat Transfer B 62, 462–478 (2012)

    Article  Google Scholar 

  5. Hetmaniok, E., Słota, D., Zielonka, A.: Experimental verification of immune recruitment mechanism and clonal selection algorithm applied for solving the inverse problems of pure metal solidification. Int. Comm. Heat Mass Transf. 47, 7–14 (2013)

    Article  Google Scholar 

  6. Hetmaniok, E., Słota, D., Zielonka, A.: Experimental verification of selected artificial intelligence algorithms used for solving the inverse Stefan problem. Numer. Heat Transfer B 66, 343–359 (2014)

    Article  Google Scholar 

  7. Hetmaniok, E., Słota, D., Zielonka, A.: Using the swarm intelligence algorithms in solution of the two-dimensional inverse Stefan problem. Comput. Math. Appl. 69, 347–361 (2015)

    Article  MathSciNet  Google Scholar 

  8. Borowik, G., Woźniak, M., Fornaia, A., Giunta, R., Napoli, C., Pappalardo, G., Tramontana, E.: A software architecture assisting workflow executions on cloud resources. Int. J. Electron. Telecommun. 61, 17–23 (2015)

    Article  Google Scholar 

  9. Woźniak, M., Kempa, W.M., Gabryel, M., Nowicki, R.K.: A finite-buffer queue with single vacation policy – analytical study with evolutionary positioning. Int. J. Appl. Math. Comput. 24, 887–900 (2014)

    Article  MathSciNet  Google Scholar 

  10. Woźniak, M., Połap, D.: On some aspects of genetic and evolutionary methods for optimization purposes. Int. J. Electron. Telecommun. 61, 7–16 (2015)

    Article  Google Scholar 

  11. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Global Optim. 39, 459–471 (2007)

    Article  MathSciNet  Google Scholar 

  12. Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 8, 687–697 (2008)

    Article  Google Scholar 

  13. Karaboga, D., Akay, B.: A comparative study of artificial bee colony algorithm. Appl. Math. Comput. 214, 108–132 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Özbakir, L., Baykasoglu, A., Tapkan, P.: Bees algorithm for generalized assignment problem. Appl. Math. Comput. 215, 3782–3795 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)

    MATH  Google Scholar 

  16. Dorigo, M., Blum, C.: Ant colony optimization theory: a survey. Theor. Comput. Sci. 344, 243–278 (2005)

    Article  MathSciNet  Google Scholar 

  17. Toksari, M.D.: Ant colony optimization for finding the global minimum. Appl. Math. Comput. 176, 308–316 (2006)

    MathSciNet  MATH  Google Scholar 

  18. Carpinteri, A., Mainardi, F.: Fractal and Fractional Calculus in Continuum Mechanics. Springer, New York (1997)

    Book  Google Scholar 

  19. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  20. Das, S.: Functional Fractional Calculus for System Identification and Controls. Springer, Berlin (2008)

    MATH  Google Scholar 

  21. Caponetto, R., Dongola, G., Fortuna, I., Petras, I.: Fractional Order Systems. Modeling and Control Applications. World Scientific Series on Nonlinear Science, Series A, vol. 72. World Scientific Publishing, New Jersey (2010)

    Google Scholar 

  22. Klafter, J., Lim, S., Metzler, R.: Fractional Dynamics. Resent Advances. World Scientific, New Jersey (2012)

    MATH  Google Scholar 

  23. Mitkowski, W., Kacprzyk, J., Baranowski, J.: Advances in the Theory and Applications of Non-integer Order Systems. Springer Inter. Publ, Cham (2013)

    Book  Google Scholar 

  24. Mitkowski, W., Skruch, P.: Fractional-order models of the supercapacitors in the form of RC ladder networks. Bull. Polish Acad. Sci. Tech. Sci. 61(3), 581–587 (2013)

    MATH  Google Scholar 

  25. Oprzędkiewicz, K.: Approximation method for a fractional order transfer function with zero and pole. Arch. Control Sci. 24(4), 409–425 (2014)

    Article  MathSciNet  Google Scholar 

  26. Obrączka, A., Kowalski, J.: Modelowanie rozkładu ciepła w materiałach ceramicznych przy użyciu równań różniczkowych niecałkowitego rzędu. In: Szczygieł, M. (ed.) Materiały XV Jubileuszowego Sympozjum „Podstawowe Problemy Energoelektroniki, Elektromechaniki i Mechatroniki”, PPEEm 2012, vol. 32 of Archiwum Konferencji PTETiS, Komitet Organizacyjny Sympozjum PPEE i Seminarium BSE, pp. 133–132 (2012)

    Google Scholar 

  27. Battaglia, J.L., Cois, O., Puigsegur, L., Oustaloup, A.: Solving an inverse heat conduction problem using a non-integer identified model. Int. J. Heat Mass Transfer 44, 2671–2680 (2001)

    Article  Google Scholar 

  28. Murio, D.A.: Stable numerical solution of a fractional-diffusion inverse heat conduction problem. Comput. Math Appl. 53, 1492–1501 (2007)

    Article  MathSciNet  Google Scholar 

  29. Murio, D.: Time fractional IHCP with Caputo fractional derivatives. Comput. Math Appl. 56, 2371–2381 (2008)

    Article  MathSciNet  Google Scholar 

  30. Liu, J., Yamamoto, M.: A backward problem for the time-fractional diffusion equation. Appl. Anal. 89, 1769–1788 (2010)

    Article  MathSciNet  Google Scholar 

  31. Zheng, G., Wei, T.: A new regularization method for the time fractional inverse advection-dispersion problem. SIAM J. Numer. Anal. 49, 1972–1990 (2011)

    Article  MathSciNet  Google Scholar 

  32. Wang, J.-G., Zhou, Y.-B., Wei, T.: A posteriori regularization parameter choice rule for the quasi-boundary value method for the backward timefractional diffusion problem. Appl. Math. Lett. 26, 741–747 (2013)

    Article  MathSciNet  Google Scholar 

  33. Yan, L., Yang, F.: Efficient Kansa-type MFS algorithm for time-fractional inverse diffusion problems. Comput. Math. Appl. (2014, in press)

    Google Scholar 

  34. Brociek, R., Słota, D., Wituła, R.: Reconstruction of the thermal conductivity coefficient in the time fractional diffusion equation. In: Latawiec, K.J., Łukaniszyn, M., Stanisławski, R. (eds.) Advances in Modeling and Control of Non-integer Order Systems. LNEE, vol. 320, pp. 239–247. Springer, Heidelberg (2015)

    Google Scholar 

  35. Obraczka, A., Mitkowski, W.: The comparison of parameter identification methods for fractional partial differential equation. Solid State Phenom. 210, 265–270 (2014)

    Article  Google Scholar 

  36. Murio, D.: Implicit finite difference approximation for time fractional diffusion equations. Comput. Math Appl. 56, 1138–1145 (2008)

    Article  MathSciNet  Google Scholar 

  37. Brociek, R.: Implicit finite difference method for time fractional diffusion equations with mixed boundary conditions. Zesz. Nauk. PŚ., Mat. Stosow. 4, 73–87 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damian Słota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Brociek, R., Słota, D. (2015). Application of Intelligent Algorithm to Solve the Fractional Heat Conduction Inverse Problem. In: Dregvaite, G., Damasevicius, R. (eds) Information and Software Technologies. ICIST 2015. Communications in Computer and Information Science, vol 538. Springer, Cham. https://doi.org/10.1007/978-3-319-24770-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24770-0_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24769-4

  • Online ISBN: 978-3-319-24770-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics