Skip to main content

Effective Realizations of Biorthogonal Wavelet Transforms of Lengths \(2K + 1\)/\(2K - 1\) with Lattice Structures on GPU and CPU

  • Conference paper
  • First Online:
Intelligent Data Engineering and Automated Learning – IDEAL 2015 (IDEAL 2015)

Abstract

The paper presents comparative results in times of calculation of biorthogonal wavelet transform of lengths \(2K+1\)/\(2K-1\) implemented with aid of two variants of lattice structures on parallel graphics processors (GPU) and on CPU. The aim of the research is to indicate lattice structure which allows to obtain higher efficiency of computations in case of both GPU and CPU architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fleet, P.J.: Discrete Wavelet Transformation: An Elementary Approach with Applications. Wiley, Hoboken (2008)

    Book  MATH  Google Scholar 

  2. Stolarek, J., Lipiński, P.: Improving watermark resistance against removal attacks using orthogonal wavelet adaptation. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM 2012. LNCS, vol. 7147, pp. 588–599. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  3. Sheikholeslami, G., Chatterjee, S., Zhang, A.: WaveCluster: a wavelet-based clustering approach for spatial data in very large databases. J. Very Large Databases 8, 289–304 (2000)

    Article  Google Scholar 

  4. Cooklev, T.: An efficient architecture for orthogonal wavelet transforms. IEEE Signal Process. Lett. 13(2), 77–79 (2006)

    Article  Google Scholar 

  5. Olkkonen, J.T., Olkkonen, H.: Discrete lattice wavelet transform. IEEE Trans. Circuits Syst. II: Express Briefs 54(1), 71–75 (2007)

    Article  MATH  Google Scholar 

  6. Yatsymirskyy, M., Stokfiszewski, K.: Effectiveness of lattice factorization of two-channel orthogonal filter banks. In: Joint Conference in New Trends in Audio & Video and Signal Processing, pp. 275–279. Lodz, Poland (2012)

    Google Scholar 

  7. Yatsymirskyy, M.: A lattice structure for the two-channel bank of symmetrical biorthogonal filters of lengths 2K+1/2K-1. In: 13th International Workshop Computational Problems of Electrical Engineering, Grybów, Poland (2012)

    Google Scholar 

  8. Daubechies, I., Sweldens, W.: Factoring wavelet transform into lifting steps. J. Fourier Anal. Appl. 4(3), 245–267 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Yildrim, A.A., Ozdogan, C.: Parallel wavelet-based clustering algorithm on GPUs using CUDA. Procedia Comput. Sci. 3, 396–400 (2011)

    Article  Google Scholar 

  10. Puchala, D., Szczepaniak, B, Yatsymirskyy, M.: Lattice structure for parallel calculation of orthogonal wavelet transform on GPUs with CUDA architecture. In: Conference on Computational Problems of Electrical Engineering, Terchova, Slovakia (2014)

    Google Scholar 

  11. Cohen, A., Daubechies, I., Feauveau, J.C.: Biorthogonal bases of compactly supported wavelets. Comm. Pure Appl. Math. 45, 485–560 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Yatsymirskyy, M.: New matrix model for two-channel bank of biorthogonal filters. Metody Informatyki Stosowanej 1, 205–212 (2011). (in Polish)

    Google Scholar 

  13. NVIDIA: Whitepaper. NVIDIA’s Next Generation CUDATM Compute Architecture. FermiTM

    Google Scholar 

  14. Hussein, M.M., Mahmoud, A.O.: Performance evaluation of discrete wavelet transform based on image compression technique on both CPU and GPU. In: International Conference on Innovations in Engineering and Technology, pp. 68–7 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariusz Puchala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Puchala, D., Szczepaniak, B., Yatsymirskyy, M. (2015). Effective Realizations of Biorthogonal Wavelet Transforms of Lengths \(2K + 1\)/\(2K - 1\) with Lattice Structures on GPU and CPU. In: Jackowski, K., Burduk, R., Walkowiak, K., Wozniak, M., Yin, H. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2015. IDEAL 2015. Lecture Notes in Computer Science(), vol 9375. Springer, Cham. https://doi.org/10.1007/978-3-319-24834-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24834-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24833-2

  • Online ISBN: 978-3-319-24834-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics