Abstract
Alzheimer’s Disease (AD) is the most prevalent progressive neurodegenerative disorder of the elderly. Prospective treatments for slowing down or pausing the process of AD require identification of the disease at an early stage. Many patients with mild cognitive impairment (MCI) may eventually develop AD. In this study, we evaluate the significance of using longitudinal data for efficiently predicting MCI-to-AD conversion a few years ahead of clinical diagnosis. The use of longitudinal data is generally restricted due to missing feature readings. We implement five different techniques to compute missing feature values of neuropsychological predictors of AD. We use two different summary measures to represent the artificially completed longitudinal features. In a comparison with other recent techniques, our work presents an improved accuracy of 71.16 % in predicting pre-clinical AD. These results prove feasibility of building AD staging and prognostic systems using longitudinal data despite the presence of missing values.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Duthey, B: Background paper 6.11: Alzheimer disease and other dementias. A Public Health Approach to Innovation, Update on 2004 Background Paper, pp. 1–74 (2013)
Alzheimer’s Disease Neuroimaging Initiative. http://adni.loni.ucs.edu. Accessed April 2015
Asrami, F.F.: AD Classification using K-OPLS and MRI. Masters’ Thesis, Department of Biomedical Engineering, Linkoping University (2012)
Mattila, J., Koikkalainen, J., Virkki, A., Simonsen, A., van Gils, M., Waldemar, G., Soininen, H., Lötjönen, J.: ADNI: a disease state fingerprint for evaluation of AD. J. Alzheimer’s Dis. 27, 163–176 (2011)
Moradi, E., Pepe, A., Gaser, C., Huttunen, H., Tohk, J.: Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects. NeuroImage 104, 398–412 (2015)
Zhang, D., Shen, D.: Predicting future clinical changes of MCI patients using longitudinal and multimodal biomarkers. PLoS ONE 7(3), e33182 (2012)
Runtti, H., Mattila, J., van Gils, M., Koikkalainen, J., Soininen, H., Lötjönen, J.: Quantitative evaluation of disease progression in a longitudinal mild cognitive impairment cohort. J. Alzheimer’s Dis. 39(1), 49–61 (2014)
Sperling, R.A., Aisen, P.S., Beckett, L.A., Bennett, D.A., Craft, S., Fagan, A.M., Iwatsubo, T., Jack Jr., C.R., Kaye, J., Montine, T.J., Park, D.C., Reiman, E.M., Rowe, C.C., Siemers, E., Stern, Y., Yaffe, K., Carrillo, M.C., Thies, B., Morrison-Bogorad, M., Wagster, M.V., Phelps, C.H.: Toward defining the preclinical stages of AD: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292 (2011)
Albert, M.S., DeKosky, S.T., Dickson, D., Dubois, B., Feldman, H.H., Fox, N.C., Gamst, A., Holtzman, D.M., Jagust, W.J., Petersen, R.C., Snyder, P.J., Carrillo, M.C., Thies, B., Phelps, C.H.: The diagnosis of mild cognitive impairment due to AD: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 270–279 (2011)
Lo, R.Y., Jagust, W.J.: Predicting missing biomarker data in a longitudinal study of AD. Neurology 78(18), 1376–1382 (2012)
Cuingnet, R., Gerardin, E., Tessieras, J., Auzias, G., Lehéricy, S., Habert, M.O., Chupin, M.: Automatic classification of patients with AD from structural MRI: a comparison of ten methods using the ADNI database. Neuroimage 56(2), 766–781 (2011)
Wolz, R., Julkunen, V., Koikkalainen, J., Niskanen, E., Zhang, D.P., Rueckert, D., Soininen, H., Lötjönen, J.: Multi-method analysis of MRI images in early diagnosis of AD. PLoS ONE 6(10), 25446 (2011)
Ye, D.H., Pohl, K.M., Davatzikos, C.: Semi-supervised pattern classification: application to structural MRI of AD. In: 2011 International Workshop on Pattern Recognition in NeuroImaging (PRNI), pp. 1–4. IEEE (2011)
Ewers, M., Walsh, C., Trojanowskid, J.Q., Shawd, L.M., Petersene, R.C., Jack Jr., C.R., Feldmang, H.H., Bokdeh, A.L.W., Alexanderi, G.E., Scheltens, P., Vellas, B., Dubois, B., Weinera, M., Hampe, H.: Prediction of conversion from mild cognitive impairment to AD dementia based upon biomarkers and neuropsychological test performance. Neurobiol. Ageing 33(7), 1203–1214 (2012)
Casanova, R., Hsu, F.C., Sink, K.M., Rapp, S.R., Williamson, J.D., Resnick, S.M., Espeland, M.A.: AD risk assessment using large-scale machine learning methods. PLoS ONE 8(11), e77949 (2013)
Acknowledgements
We would like to thank all investigators of ADNI listed at: https://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowedge-ment_List.pdf, for developing and making their data publically available.
Author information
Authors and Affiliations
Consortia
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Minhas, S., Khanum, A., Riaz, F., Alvi, A., Khan, S.A., Alzheimer’s Disease Neuroimaging Initiative. (2015). Early Alzheimer’s Disease Prediction in Machine Learning Setup: Empirical Analysis with Missing Value Computation. In: Jackowski, K., Burduk, R., Walkowiak, K., Wozniak, M., Yin, H. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2015. IDEAL 2015. Lecture Notes in Computer Science(), vol 9375. Springer, Cham. https://doi.org/10.1007/978-3-319-24834-9_49
Download citation
DOI: https://doi.org/10.1007/978-3-319-24834-9_49
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24833-2
Online ISBN: 978-3-319-24834-9
eBook Packages: Computer ScienceComputer Science (R0)