Skip to main content

Supervoxel Classification Forests for Estimating Pairwise Image Correspondences

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9352))

Included in the following conference series:

Abstract

This paper proposes a general method for establishing pairwise correspondences, which is a fundamental problem in image analysis. The method consists of over-segmenting a pair of images into supervoxels. A forest classifier is then trained on one of the images, the source, by using supervoxel indices as voxelwise class labels. Applying the forest on the other image, the target, yields a supervoxel labelling which is then regularized using majority voting within the boundaries of the target’s supervoxels. This yields semi-dense correspondences in a fully automatic, efficient and robust manner. The advantage of our approach is that no prior information or manual annotations are required, making it suitable as a general initialisation component for various medical imaging tasks that require coarse correspondences, such as, atlas/patch-based segmentation, registration, and atlas construction. Our approach is evaluated on a set of 150 abdominal CT images. In this dataset we use manual organ segmentations for quantitative evaluation. In particular, the quality of the correspondences is determined in a label propagation setting. Comparison to other state-of-the-art methods demonstrate the potential of supervoxel classification forests for estimating image correspondences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: SLIC superpixels. No. EPFL-REPORT-149300, p. 15, June 2010

    Google Scholar 

  2. Breiman, L.: Random forests. Machine learning, 5–32 (2001)

    Google Scholar 

  3. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and regression trees. CRC Press (1984)

    Google Scholar 

  4. Coupé, P., Manjón, J.V., Fonov, V., Pruessner, J., Robles, M., Collins, D.L.: Patch-based segmentation using expert priors: Application to hippocampus and ventricle segmentation. NeuroImage 54(2), 940–954 (2011)

    Article  Google Scholar 

  5. Criminisi, A., Shotton, J., Konukoglu, E.: Decision forests for classification, regression, density estimation, manifold learning and semi-supervised learning. Learning 7, 81–227 (2011)

    Google Scholar 

  6. Criminisi, A., Shotton, J., Robertson, D., Konukoglu, E.: Regression forests for efficient anatomy detection and localization in CT studies. In: Menze, B., Langs, G., Tu, Z., Criminisi, A. (eds.) MICCAI 2010. LNCS, vol. 6533, pp. 106–117. Springer, Heidelberg (2011)

    Google Scholar 

  7. Glocker, B., Zikic, D., Haynor, D.R.: Robust registration of longitudinal spine CT. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part I. LNCS, vol. 8673, pp. 251–258. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  8. Heckemann, R.A., Hajnal, J.V., Aljabar, P., Rueckert, D., Hammers, A.: Automatic anatomical brain mri segmentation combining label propagation and decision fusion. NeuroImage 33(1), 115–126 (2006)

    Article  Google Scholar 

  9. Lucchi, A., Smith, K., Achanta, R., Knott, G., Fua, P.: Supervoxel-based segmentation of mitochondria in em image stacks with learned shape features. IEEE Transactions on Medical Imaging 31(2), 474–486 (2012)

    Article  Google Scholar 

  10. Montillo, A., Shotton, J., Winn, J., Iglesias, J.E., Metaxas, D., Criminisi, A.: Entangled decision forests and their application for semantic segmentation of CT images, pp. 184–196 (2011)

    Google Scholar 

  11. Tong, T., Wolz, R., Wang, Z., Gao, Q., Misawa, K., Fujiwara, M., Mori, K., Hajnal, J.V., Rueckert, D.: Discriminative dictionary learning for abdominal multi-organ segmentation. Medical Image Analysis 23(1), 92–104 (2015)

    Article  Google Scholar 

  12. Wang, H., Yushkevich, P.A.: Multi-atlas segmentation without registration: a supervoxel-based approach, pp. 535–542 (2013)

    Google Scholar 

  13. Wolz, R., Chu, C., Misawa, K., Fujiwara, M., Mori, K., Rueckert, D.: Automated abdominal multi-organ segmentation with subject-specific atlas generation. IEEE Transactions on Medical Imaging 32(9), 1723–1730 (2013)

    Article  Google Scholar 

  14. Zikic, D., Glocker, B., Criminisi, A.: Encoding atlases by randomized classification forests for efficient multi-atlas label propagation. Medical image analysis, July 2014

    Google Scholar 

  15. Zitova, B., Flusser, J.: Image registration methods: a survey. Image and vision computing 21(11), 977–1000 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fahdi Kanavati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Kanavati, F. et al. (2015). Supervoxel Classification Forests for Estimating Pairwise Image Correspondences. In: Zhou, L., Wang, L., Wang, Q., Shi, Y. (eds) Machine Learning in Medical Imaging. MLMI 2015. Lecture Notes in Computer Science(), vol 9352. Springer, Cham. https://doi.org/10.1007/978-3-319-24888-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24888-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24887-5

  • Online ISBN: 978-3-319-24888-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics