Skip to main content

A Composite of Features for Learning-Based Coronary Artery Segmentation on Cardiac CT Angiography

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9352))

Included in the following conference series:

Abstract

Coronary artery segmentation is important in quantitative coronary angiography. In this work, a novel method is proposed for coronary artery segmentation. It integrates coronary artery features of density, local shape and global structure into the learning framework. The density feature is the vessel’s relative density estimated by means of Gaussian mixture models and is able to suppress individual variances. The local tube shape of the vessel is measured with the advantages of the 3-dimensional multi-scale Hessian filter and is able to enhance the small vessels. The global structure feature is predicted from a support vector regression in terms of vessel’s spatial position and emphasizes the geometric morphometric attribute of the coronary artery tree running across the surface of the heart. The features are fed into a support vector classifier for vessel segmentation. The proposed methodology was tested on ten 3D cardiac computed tomography angiography datasets. It obtained a sensitivity of 81%, a specificity of 99%, and Dice coefficient of 84%. The performance is good.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kitslaar, P., Frenay, M., Oost, E., Dijkstra, J., Stoel, B., Reiber, J.: Connected component and morphology based extraction of arterial centerlines of the heart (CocomoBeach). In: MICCAI Workshop S4 (2008)

    Google Scholar 

  2. Wang, C., Smedby, O.: An automatic seeding method for coronary artery segmentation and skeletonization in CTA. In: MICCAI Workshop S4 (2008)

    Google Scholar 

  3. Li, Z., Zhang, Y., Liu, G., Shao, H., Li, W.: A robust coronary artery identification and centerline extraction method in angiographies. Biomed. Signal Proce. 16, 1–8 (2015)

    Article  Google Scholar 

  4. Zhou, C., Chan, H., Chughtai, C., Patel, S., Hadijiiski, L., Wei, J., Kazerooni, E.: Automated coronary artery tree extraction in coronary CT angiography using a multi-scale enhancement and dynamic balloon tracking (MSCAR-DBT) method. Comput. Med. Imag. Grap. 36, 1–10 (2012)

    Article  Google Scholar 

  5. Yang, G., Kitslaar, P., Frenay, M., Broersen, A., Boogers, M., Bax, J., Reiber, J., Dijkstra, J.: Automatic centerline extraction of coronary arteries in coronary computed tomographic angiography. Int. J. Card. Imaging 28(4), 921–933 (2012)

    Article  Google Scholar 

  6. Zambal, S., Hladuvka, J., Kanitsar, A., Buhler, K.: Shape and appearance models for automatic coronary artery tracking. In: MICCAI Workshop S4 (2008)

    Google Scholar 

  7. Schaap, M., Walum, T., Neefjes, L., Metz, C., Capuano, E., Bruijne, M., Niessen, W.: Robust shape regression for supervised vessel segmentation and its application to coronary segmentation in CTA. IEEE Trans. Med. Imaging 30(11), 1974–1986 (2011)

    Article  Google Scholar 

  8. Wong, W., So, R., Chung, A.: Principal curves for lumen center extraction and flow channel width estimation in 3-D arterial networks: theory, algorithm, and validation. IEEE Trans. Image Process. 21(4), 1847–1862 (2012)

    Article  MathSciNet  Google Scholar 

  9. Schneider, M., Hirsch, S., Weber, B., Szekely, G., Menze, B.: Joint 3-D vessel segmentation and centerline extraction using oblique Hough forests with steerable filters. Med Image Anal 19, 220–249 (2015)

    Article  Google Scholar 

  10. Friman, O., Hindennach, M., Kuhnel, C., Peitgen, H.: Multiple hypothesis template tracking of small 3D vessel structures. Med. Image Anal. 14, 160–171 (2010)

    Article  Google Scholar 

  11. Kitamura Y., Li Y., and Ito W.: Automatic coronary extraction by supervised detection and shape matching. In: Proc. of ISBI, pp. 234-237 (2012)

    Google Scholar 

  12. Zheng, Y., Tek, H., Funka-Lea, G.: Robust and accurate coronary artery centerline extraction in CTA by combining model-driven and data-driven approaches. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part III. LNCS, vol. 8151, pp. 74–81. Springer, Heidelberg (2013)

    Google Scholar 

  13. Bishop, C.: Pattern Recognition and Machine Learning, pp. 78–124. Springer Science Business Media, Heidelberg (2006)

    Google Scholar 

  14. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum-likelihood from incomplete data via the EM algorithm. J. Royal Statist. Soc. Ser. B. 39(1), 1–38 (1977)

    MathSciNet  Google Scholar 

  15. Sato, Y., Nakajima, S., Shiraga, N., Atsumi, H., Yoshida, S., Koller, T., Gerig, G., Kikinis, R.: Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Med. Image Anal. 2(2), 143–168 (1998)

    Article  Google Scholar 

  16. Dodge, J., Brown, B., Bolson, E., Dodge, H.: Lumen diameter of normal human coronary arteries. Influence of age, sex, anatomic variation, and left ventricular hypertrophy or dilation. Circulation 86, 232–246 (1992)

    Article  Google Scholar 

  17. Smola, A., Scholkopf, B.: A tutorial on support vector regression. Stat. Comp. 14, 199–222 (2004)

    Article  MathSciNet  Google Scholar 

  18. Joachims T.: Estimating the generalization performance of an SVM efficiently. In: Proc. ICML, pp. 431-438 (2000)

    Google Scholar 

  19. Mao, S., Ahmadi, N., Shah, B., Beckmann, D., Chen, A., Ngo, L., Flores, F., Gao, Y., Budoff, M.: Normal thoracic aorta diameter on cardiac computed tomography in healthy asymptomatic adult; impact of age and gender. Acad Radiol 15(7), 827–834 (2008)

    Article  Google Scholar 

  20. Hazel, R., Pollack, S., Reichek, N.: Investigation of the relationship between age and the angle of aortic insertion on the left ventricle using 3D MRI. J. Cardiov. Magn. Resonance 14, 77–78 (2012)

    Article  Google Scholar 

  21. Schaap, M., Metz, C., Walsum, T., Giessen, A., et al.: Standardized evaluation methodology and reference database for evaluating coronary artery centerline extraction algorithms. Med. Image Anal. 13, 701–714 (2009)

    Article  Google Scholar 

  22. Lee, T., Kashyap, R., Chu, C.: Building skeleton models via 3-D medical surface/axis thinning algorithms. Graph. Model and Im. Proc. 56(6), 462–478 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanling Chi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Chi, Y. et al. (2015). A Composite of Features for Learning-Based Coronary Artery Segmentation on Cardiac CT Angiography. In: Zhou, L., Wang, L., Wang, Q., Shi, Y. (eds) Machine Learning in Medical Imaging. MLMI 2015. Lecture Notes in Computer Science(), vol 9352. Springer, Cham. https://doi.org/10.1007/978-3-319-24888-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24888-2_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24887-5

  • Online ISBN: 978-3-319-24888-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics