Abstract
In the context of Markov decision processes running in continuous time, one of the most intriguing challenges is the efficient approximation of finite horizon reachability objectives. A multitude of sophisticated model checking algorithms have been proposed for this. However, no proper benchmarking has been performed thus far.
This paper presents a novel and yet simple solution: an algorithm, originally developed for a restricted subclass of models and a subclass of schedulers, can be twisted so as to become competitive with the more sophisticated algorithms in full generality. As the second main contribution, we perform a comparative evaluation of the core algorithmic concepts on an extensive set of benchmarks varying over all key parameters: model size, amount of non-determinism, time horizon, and precision.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Measurable with respect to the standard \(\sigma \)-algebra on the set of finite histories [25].
References
Aziz, A., Sanwal, K., Singhal, V., Brayton, R.K.: Verifying continuous time Markov chains. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 269–276. Springer, Heidelberg (1996)
Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.: Model-checking algorithms for continuous-time Markov chains. IEEE Trans. Softw. Eng. 29(6), 524–541 (2003)
Baier, C., Hermanns, H., Katoen, J., Haverkort, B.R.: Efficient computation of time-bounded reachability probabilities in uniform continuous-time Markov decision processes. Theor. Comput. Sci. 345(1), 2–26 (2005)
Brázdil, T., Forejt, V., Krcál, J., Kretínský, J., Kucera, A.: Continuous-time stochastic games with time-bounded reachability. Inf. Comput. 224, 46–70 (2013)
Bruno, J.L., Downey, P.J., Frederickson, G.N.: Sequencing tasks with exponential service times to minimize the expected flow time or makespan. J. ACM 28(1), 100–113 (1981)
Buchholz, P., Hahn, E.M., Hermanns, H., Zhang, L.: Model checking algorithms for CTMDPs. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 225–242. Springer, Heidelberg (2011)
Buchholz, P., Schulz, I.: Numerical analysis of continuous time Markov decision processes over finite horizons. Comput. OR 38(3), 651–659 (2011)
Butkova, Y., Hatefi, H., Hermanns, H., Krčál, J.: Optimal continuous time Markov decisions. CoRR abs/1507.02876 (2015). http://arxiv.org/abs/1507.02876
Eisentraut, Christian, Hermanns, Holger, Katoen, Joost-Pieter, Zhang, Lijun: A semantics for every GSPN. In: Colom, José-Manuel, Desel, Jörg (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 90–109. Springer, Heidelberg (2013)
Fearnley, J., Rabe, M., Schewe, S., Zhang, L.: Efficient approximation of optimal control for continuous-time markov games. In: FSTTCS, pp. 399–410 (2011)
Ghemawat, S., Gobioff, H., Leung, S.T.: The Google file system. In: SOSP, pp. 29–43. ACM (2003)
Guck, D.: Quantitative Analysis of Markov Automata. Master’s thesis, RWTH Aachen University, June 2012
Guck, D., Hatefi, H., Hermanns, H., Katoen, J.-P., Timmer, M.: Modelling, reduction and analysis of markov automata. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 55–71. Springer, Heidelberg (2013)
Gurobi Optimization Inc: Gurobi optimizer reference manual, version 6.0 (2015)
Hatefi, H., Hermanns, H.: Model checking algorithms for Markov automata. In: ECEASST, vol. 53 (2012)
Hatefi, H., Hermanns, H.: Improving time bounded reachability computations in interactive markov chains. In: Arbab, F., Sirjani, M. (eds.) FSEN 2013. LNCS, vol. 8161, pp. 250–266. Springer, Heidelberg (2013)
Haverkort, B.R., Hermanns, H., Katoen, J.: On the use of model checking techniques for dependability evaluation. In: SRDS 2000, pp. 228–237. IEEE CS (2000)
Hermanns, H., Katoen, J.-P.: The how and why of interactive markov chains. In: de Boer, F.S., Bonsangue, M.M., Hallerstede, S., Leuschel, M. (eds.) FMCO 2009. LNCS, vol. 6286, pp. 311–338. Springer, Heidelberg (2010)
Jensen, A.: Markoff chains as an aid in the study of Markoff processes. Scand. Actuarial J. 1953, 87–91 (1953)
Katoen, J., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins and outs of the probabilistic model checker MRMC. Perform. Eval. 68(2), 90–104 (2011)
Lefévre, C.: Optimal control of a birth and death epidemic process. Oper. Res. 29(5), 971–982 (1981)
Marsan, M.A., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Modelling with Generalized Stochastic Petri Nets. Wiley, New York (1994)
Meyer, J.F., Movaghar, A., Sanders, W.H.: Stochastic activity networks: Structure, behavior, and application. In: PNPM, pp. 106–115 (1985)
Miller, B.L.: Finite state continuous time Markov decision processes with a finite planning horizon. SIAM J. Control 6(2), 266–280 (1968)
Neuhäußer, M.R.: Model checking nondeterministic and randomly timed systems. Ph.D. thesis, RWTH Aachen University (2010)
Neuhäußer, M.R., Stoelinga, M., Katoen, J.-P.: Delayed nondeterminism in continuous-time markov decision processes. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 364–379. Springer, Heidelberg (2009)
Neuhäußer, M.R., Zhang, L.: Time-bounded reachability probabilities in continuous-time Markov decision processes. In: QEST, pp. 209–218 (2010)
Qiu, Q., Qu, Q., Pedram, M.: Stochastic modeling of a power-managed system-construction andoptimization. IEEE Trans. CAD Integr. Circ. Syst. 20(10), 1200–1217 (2001)
Rabe, M.N., Schewe, S.: Finite optimal control for time-bounded reachability in CTMDPs and continuous-time Markov games. Acta Inf. 48(5–6), 291–315 (2011)
Rabe, M.N., Schewe, S.: Optimal time-abstract schedulers for CTMDPs and continuous-time Markov games. Theor. Comput. Sci. 467, 53–67 (2013)
Timmer, M., van de Pol, J., Stoelinga, M.I.A.: Confluence reduction for markov automata. In: Braberman, V., Fribourg, L. (eds.) FORMATS 2013. LNCS, vol. 8053, pp. 243–257. Springer, Heidelberg (2013)
Zhang, L., Neuhäußer, M.R.: Model checking interactive markov chains. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 53–68. Springer, Heidelberg (2010)
Acknowledgements
We are grateful to Moritz Hahn (ISCAS Beijing), Dennis Guck (Universiteit Twente), and Markus Rabe (UC Berkeley) for discussions and technical contributions. This work is supported by the EU 7th Framework Programme projects 295261 (MEALS) and 318490 (SENSATION), by the Czech Science Foundation project P202/12/G061, the DFG Transregional Collaborative Research Centre SFB/TR 14 AVACS, and by the CDZ project 1023 (CAP).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Butkova, Y., Hatefi, H., Hermanns, H., Krčál, J. (2015). Optimal Continuous Time Markov Decisions. In: Finkbeiner, B., Pu, G., Zhang, L. (eds) Automated Technology for Verification and Analysis. ATVA 2015. Lecture Notes in Computer Science(), vol 9364. Springer, Cham. https://doi.org/10.1007/978-3-319-24953-7_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-24953-7_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24952-0
Online ISBN: 978-3-319-24953-7
eBook Packages: Computer ScienceComputer Science (R0)