Abstract
We present ASSA-PBN, a tool for approximate steady-state analysis of large probabilistic Boolean networks (PBNs). ASSA-PBN contains a constructor, a simulator, and an analyser which can approximately compute the steady-state probabilities of PBNs. For large PBNs, such approximate analysis is the only viable way to study their long-run behaviours. Experiments show that ASSA-PBN can handle large PBNs with a few thousands of nodes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Shmulevich, I., Dougherty, E., Zhang, W.: From boolean to probabilistic boolean networks as models of genetic regulatory networks. Proc. IEEE 90(11), 1778–1792 (2002)
Trairatphisan, P., Mizera, A., Pang, J., Tantar, A.A., Schneider, J., Sauter, T.: Recent development and biomedical applications of probabilistic boolean networks. Cell Commun. Signal. 11, 46 (2013)
Shmulevich, I., Gluhovsky, I., Hashimoto, R., Dougherty, E., Zhang, W.: Steady-state analysis of genetic regulatory networks modelled by probabilistic boolean networks. Comp. Funct. Genomics 4(6), 601–608 (2003)
Trairatphisan, P., Mizera, A., Pang, J., Tantar, A.A., Sauter, T.: optPBN: An optimisation toolbox for probabilistic boolean networks. PLOS ONE 9(7), e98001 (2014)
Vincent, J.M., Marchand, C.: On the exact simulation of functionals of stationary Markov chains. Linear Algebra Appl. 385, 285–310 (2004)
Raftery, A., Lewis, S.: How many iterations in the Gibbs sampler? Bayesian Stat. 4, 763–773 (1992)
Mizera, A., Pang, J., Yuan, Q.: Reviving the two-state markov chain approach (technical report) (2015). Accessed on http://arxiv.org/abs/1501.01779
Tafazzoli, A., Wilson, J., Lada, E., Steiger, N.: Skart: A skewness-and autoregression-adjusted batch-means procedure for simulation analysis. In: Proceedings of the 2008 Winter Simulation Conference, pp. 387–395 (2008)
Walker, A.: An efficient method for generating discrete random variables with general distributions. ACM Trans. Math. Softw. 3(3), 253–256 (1977)
Shmulevich, I., Dougherty, E.R.: Probabilistic Boolean Networks: The Modeling and Control of Gene Regulatory Networks. SIAM Press, Philadelphia (2010)
Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)
Propp, J.G., Wilson, D.: Exact sampling with coupled markov chains and applications to statistical mechanics. Random Struct. Algorithms 9(1), 223–252 (1996)
El Rabih, D., Pekergin, N.: Statistical model checking using perfect simulation. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 120–134. Springer, Heidelberg (2009)
Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 223–235. Springer, Heidelberg (2002)
Sen, K., Viswanathan, M., Agha, G.: On statistical model checking of stochastic systems. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 266–280. Springer, Heidelberg (2005)
Rohr, C.: Simulative model checking of steady state and time-unbounded temporal operators. Trans. Petri Nets Models Concurrency 8, 142–158 (2013)
Gelman, A., Rubin, D.: Inference from iterative simulation using multiple sequences. Stat. Sci. 7(4), 457–472 (1992)
Acknowledgement
Qixia Yuan is supported by the National Research Fund, Luxembourg (grant 7814267).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Mizera, A., Pang, J., Yuan, Q. (2015). ASSA-PBN: An Approximate Steady-State Analyser of Probabilistic Boolean Networks. In: Finkbeiner, B., Pu, G., Zhang, L. (eds) Automated Technology for Verification and Analysis. ATVA 2015. Lecture Notes in Computer Science(), vol 9364. Springer, Cham. https://doi.org/10.1007/978-3-319-24953-7_16
Download citation
DOI: https://doi.org/10.1007/978-3-319-24953-7_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24952-0
Online ISBN: 978-3-319-24953-7
eBook Packages: Computer ScienceComputer Science (R0)