Skip to main content

TSO-to-TSO Linearizability Is Undecidable

  • Conference paper
  • First Online:
Automated Technology for Verification and Analysis (ATVA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 9364))

  • 1007 Accesses

Abstract

TSO-to-TSO linearizability is a variant of linearizability for concurrent libraries on the Total Store Order (TSO) memory model. It is proved in this paper that TSO-to-TSO linearizability for a bounded number of processes is undecidable. We first show that the trace inclusion problem of a classic-lossy single-channel system, which is known undecidable, can be reduced to the history inclusion problem of specific libraries on the TSO memory model. Based on the equivalence between history inclusion and extended history inclusion for these libraries, we then prove that the extended history inclusion problem of libraries is undecidable on the TSO memory model. By means of extended history inclusion as an equivalent characterization of TSO-to-TSO linearizability, we finally prove that TSO-to-TSO linearizability is undecidable for a bounded number of processes.

This work is partially supported by the National Natural Science Foundation of China under Grants No.60721061, No.60833001, No.61272135, No.61700073, No.61100069, No.61472405, and No.61161130530.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    “t" represents TSO memory model. “e" represents that the operational semantics in this paper extends standard TSO operational semantics [14] similarly as [7].

References

  1. Alur, R., McMillan, K., Peled, D.: Model-checking of correctness conditions for concurrent objects. In: LICS 1996, pp. 219–228. IEEE Computer Society (1996)

    Google Scholar 

  2. Atig, M.F., Bouajjani, A., Burckhardt, S., Musuvathi, M.: On the verification problem for weak memory models. In: Hermenegildo, M.V., Palsberg, J. (eds.) POPL 2010, pp. 7–18. ACM (2010)

    Google Scholar 

  3. Batty, M., Dodds, M., Gotsman, A.: Library abstraction for C/C++ concurrency. In: Giacobazzi, R., Cousot, R. (eds.) POPL 2013, pp. 235–248. ACM (2013)

    Google Scholar 

  4. Batty, M., Owens, S., Sarkar, S., Sewell, P., Weber, T.: Mathematizing C++ concurrency. In: Ball, T., Sagiv, M. (eds.) POPL 2011, pp. 55–66. ACM (2011)

    Google Scholar 

  5. Bouajjani, A., Emmi, M., Enea, C., Hamza, J.: Verifying concurrent programs against sequential specifications. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 290–309. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  6. Bouajjani, A., Emmi, M., Enea, C., Hamza, J.: Tractable refinement checking for concurrent objects. In: Rajamani, S.K., Walker, D. (eds.) POPL 2015, pp. 651–662. ACM (2015)

    Google Scholar 

  7. Burckhardt, S., Gotsman, A., Musuvathi, M., Yang, H.: Concurrent library correctness on the TSO memory model. In: Seidl, H. (ed.) Programming Languages and Systems. LNCS, vol. 7211, pp. 87–107. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Filipović, I., O’Hearn, P., Rinetzky, N., Yang, H.: Abstraction for concurrent objects. In: Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 252–266. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Gotsman, A., Musuvathi, M., Yang, H.: Show no weakness: sequentially consistent specifications of TSO libraries. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 31–45. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

    Article  Google Scholar 

  11. Lamport, L.: How to make a multiprocessor computer that correctly executes multiprocess program. IEEE Trans. Comput. 28(9), 690–691 (1979)

    Article  MATH  Google Scholar 

  12. Liu, Y., Chen, W., Liu, Y.A., Sun, J., Zhang, S.J., Dong, J.S.: Verifying linearizability via optimized refinement checking. IEEE Trans. Software Eng. 39(7), 1018–1039 (2013)

    Article  Google Scholar 

  13. Manson, J., Pugh, W., Adve, S.V.: The Java memory model. In: Palsberg, J., Abadi, M. (eds.) POPL 2005, pp. 378–391. ACM (2005)

    Google Scholar 

  14. Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-TSO. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 391–407. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Sarkar, S., Sewell, P., Alglave, J., Maranget, L., Williams, D.: Understanding POWER multiprocessors. In: Hall, M.W., Padua, D.A. (eds.) PLDI 2011, pp. 175–186. ACM (2011)

    Google Scholar 

  16. Schnoebelen, P.: Bisimulation and other undecidable equivalences for lossy channel systems. In: Kobayashi, N., Babu, C.S. (eds.) TACS 2001. LNCS, vol. 2215, pp. 385–399. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  17. Vechev, M., Yahav, E., Yorsh, G.: Experience with model checking linearizability. In: Păsăreanu, C.S. (ed.) Model Checking Software. LNCS, vol. 5578, pp. 261–278. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  18. Wang, C., Lv, Y., Wu, P.: TSO-to-TSO Linearizability is Undecidable. Technical report ISCAS-SKLCS-15-03, State Key Laboratory of Computer Science, ISCAS, CAS (2015). http://lcs.ios.ac.cn/~lvyi/files/ISCAS-SKLCS-15-03.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, C., Lv, Y., Wu, P. (2015). TSO-to-TSO Linearizability Is Undecidable. In: Finkbeiner, B., Pu, G., Zhang, L. (eds) Automated Technology for Verification and Analysis. ATVA 2015. Lecture Notes in Computer Science(), vol 9364. Springer, Cham. https://doi.org/10.1007/978-3-319-24953-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24953-7_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24952-0

  • Online ISBN: 978-3-319-24953-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics