Abstract
Large knowledge graphs increasingly add value to various applications that require machines to recognize and understand queries and their semantics, as in search or question answering systems. Latent variable models have increasingly gained attention for the statistical modeling of knowledge graphs, showing promising results in tasks related to knowledge graph completion and cleaning. Besides storing facts about the world, schema-based knowledge graphs are backed by rich semantic descriptions of entities and relation-types that allow machines to understand the notion of things and their semantic relationships. In this work, we study how type-constraints can generally support the statistical modeling with latent variable models. More precisely, we integrated prior knowledge in form of type-constraints in various state of the art latent variable approaches. Our experimental results show that prior knowledge on relation-types significantly improves these models up to 77% in link-prediction tasks. The achieved improvements are especially prominent when a low model complexity is enforced, a crucial requirement when these models are applied to very large datasets. Unfortunately, type-constraints are neither always available nor always complete e.g., they can become fuzzy when entities lack proper typing. We show that in these cases, it can be beneficial to apply a local closed-world assumption that approximates the semantics of relation-types based on observations made in the data.
Chapter PDF
Similar content being viewed by others
Keywords
References
Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., Turian, J., Warde-Farley, D., Bengio, Y.: Theano: a CPU and GPU math compiler in Python. In: Proceedings of the 9th Python in Science Conference, pp. 3–10 (2010)
Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Int. J. Semantic Web Inf. Syst. 5(3), 1–22 (2009)
Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hellmann, S.: Dbpedia - a crystallization point for the web of data. Web Semant. 7(3), 154–165 (2009)
Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: SIGMOD, pp. 1247–1250. ACM (2008)
Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: NIPS, pp. 2787–2795 (2013)
Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka, Jr., E.R., Mitchell, T.M.: Toward an architecture for never-ending language learning. In: AAAI. AAAI Press (2010)
Chang, K., Yih, W., Yang, B., Meek, C.: Typed tensor decomposition of knowledge bases for relation extraction. In: EMNLP, pp. 1568–1579 (2014)
Dong, X., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K., Strohmann, T., Sun, S., Zhang, W.: Knowledge vault: a web-scale approach to probabilistic knowledge fusion. In: SIGKDD, pp. 601–610. ACM (2014)
Hoffart, J., Suchanek, F.M., Berberich, K., Lewis-Kelham, E., de Melo, G., Weikum, G.: Yago2: exploring and querying world knowledge in time, space, context, and many languages. In: WWW, pp. 229–232. ACM (2011)
Krompaß, D., Nickel, M., Tresp, V.: Large-scale factorization of type-constrained multi-relational data. In: DSAA, pp. 18–24. IEEE (2014)
Krompaß, D., Nickel, M., Tresp, V.: Querying factorized probabilistic triple databases. In: Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock, C., Vrandečić, D., Groth, P., Noy, N., et al. (eds.) ISWC 2014, Part II. LNCS, vol. 8797, pp. 114–129. Springer, Heidelberg (2014)
Lao, N., Cohen, W.W.: Relational retrieval using a combination of path-constrained random walks. Mach. Learn. 81(1), 53–67 (2010)
Lassila, O., Swick, R.R.: Resource Description Framework (RDF) Model and Syntax Specification. W3c recommendation, W3C (1999)
Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: AAAI, pp. 2181–2187 (2015)
Miller, G.A.: Wordnet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)
Nickel, M., Jiang, X., Tresp, V.: Reducing the rank in relational factorization models by including observable patterns. In: NIPS, pp. 1179–1187 (2014)
Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine learning for knowledge graphs: From multi-relational link prediction to automated knowledge graph construction. CoRR, abs/1503.00759 (2015)
Nickel, M., Tresp, V., Kriegel, H.: A three-way model for collective learning on multi-relational data. In: ICML, pp. 809–816. ACM (2011)
Nickel, M., Tresp, V., Kriegel, H.: Factorizing yago: scalable machine learning for linked data. In: WWW, pp. 271–280. ACM (2012)
Socher, R., Chen, D., Manning, C.D., Ng, A.Y.: Reasoning with neural tensor networks for knowledge base completion. In: NIPS (2013)
Swartz, A.: Musicbrainz: a semantic web service. IEEE Intell. Syst. 17(1), 76–77 (2002)
Wan, L., Zeiler, M.D., Zhang, S., LeCun, Y., Fergus, R.: Regularization of neural networks using dropconnect. In: ICML, vol. 28, pp. 1058–1066. JMLR.org (2013)
Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: AAAI, pp. 1112–1119 (2014)
Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. CoRR, abs/1412.6575 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Krompaß, D., Baier, S., Tresp, V. (2015). Type-Constrained Representation Learning in Knowledge Graphs. In: Arenas, M., et al. The Semantic Web - ISWC 2015. ISWC 2015. Lecture Notes in Computer Science(), vol 9366. Springer, Cham. https://doi.org/10.1007/978-3-319-25007-6_37
Download citation
DOI: https://doi.org/10.1007/978-3-319-25007-6_37
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-25006-9
Online ISBN: 978-3-319-25007-6
eBook Packages: Computer ScienceComputer Science (R0)