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GAMPP: Genetic Algorithm for UAV Mission
Planning Problems

Gema Bello-Orgaz, Cristian Ramirez-Atencia, Jaime Fradera-Gil and David
Camacho

Abstract Due to the rapid development of the UAVs capabilities, these are being
incorporated into many fields to perform increasingly complex tasks. Some of these
tasks are becoming very important because they involve a high risk to the vehi-
cle driver, such as detecting forest fires or rescue tasks, while using UAVs avoids
risking human lives. Recent researches on artificial intelligence techniques applied
to these systems provide a new degree of high-level autonomy of them. Mission
planning for teams of UAVs can be defined as the planning process of locations
to visit (waypoints) and the vehicle actions to do (loading/dropping a load, tak-
ing videos/pictures, acquiring information), typically over a time period. Currently,
UAVs are controlled remotely by human operators from ground control stations, or
use rudimentary systems. This paper presents a new Genetic Algorithm for solv-
ing Mission Planning Problems (GAMPP) using a cooperative team of UAVs. The
fitness function has been designed combining several measures to look for optimal
solutions minimizing the fuel consumption and the mission time (or makespan).
The algorithm has been experimentally tested through several missions where its
complexity is incrementally modified to measure the scalability of the problem. Ex-
perimental results show that the new algorithm is able to obtain good solutions im-
proving the runtime of a previous approach based on CSPs.
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1 Introduction

The potential applications of Unmanned Aerial Vehicles (UAVs) are varied, includ-
ing surveillance [8], disaster and crisis management [11], and agriculture or forestry
[7], among others. Therefore, over the past 20 years, a large number of research
works related to this field have been carried out [5]. Due to the rapid development
of the UAVs capabilities, these are being incorporated into many areas to perform
increasingly complex tasks. Some of these tasks are becoming very important be-
cause they involve a high risk to the vehicle driver, such as detecting forest fire or
rescue tasks, while using UAVs avoids risking human lives.

A mission can be described as a set of goals that are achieved by performing some
tasks with a group of resources over a period of time. Specifically, mission planning
for UAVs can be defined as the planning process of locations to visit (waypoints) and
the vehicle actions to do (loading/dropping a load, taking videos/pictures, acquiring
information), typically over a time period. There are some attempts to implement
mission planning systems for UAVs in the literature. Doherty et al. [3] presented
an architectural framework for mission planning and execution monitoring and its
integration into a fully deployed unmanned helicopter. Then planning and moni-
toring modules use Temporal Action Logic (TAL) for reasoning about actions and
changes, and the knowledge gathered from the sensors during plan execution is used
in the process. Other novel approach formulates the mission planning problem as a
Constraint Satisfaction Problem or CSP, where the tactic mission is modelled and
solved using constraint satisfaction techniques [9].

These methods can be improved using stochastic search algorithms based on an
objective function to be optimized, also known as Genetic Algorithms (GAs). There
are many applications where GAs have been successful, from optimization [2] to
Data Mining [6, 1]. GAs have demonstrated to be robust, able to find satisfactory
solutions in highly multidimensional problems with complex relations between the
variables. The Soliday et al.[10] approach developed a GA able to effectively solve
UAV missions under complex constraints. The GA was constructed using a novel
representation based on the nearest neighbour search, being each allele the N Near-
est Neighbours. It uses a qualitative fitness function based on the number of mission
objectives and the time allowed. Finally, other novel work has designed a graph
based representation for mission planning of UAVs to carry out tasks in a flying
space constrained with the presence of flight prohibited zones and radar sites [4].

This work aims to design and implement a new mission planning algorithm in
order to improve the existing approaches using GAs. For this purpose a fitness func-
tion has been designed combining several measures to look for optimal solutions
minimizing the fuel cost and the mission time (or makespan). These measures used
in the fitness function and their weights can be changed in the algorithm settings.
Then the algorithm is applied to real-world cases and a detailed analysis of the ex-
perimental results is carried out.

The rest of the paper is structured as follows. Section 2 describes the model
designed for generating UAV missions. Section 3 presents the genetic algorithm,
the encoding used and the fitness function implemented to solve UAV missions.
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Fig. 1 Input/Output example of the genetic algorithm for mission planning

Section 4 provides a description of the dataset used, the experimental setup of the
algorithm and a complete experimental evaluation of it. Finally, in Section 5, the
conclusions and some future research lines of the work are presented.

2 UAV Mission Plan Description

This section details the proposed structure to generate missions that the genetic
algorithm receives as input, and also the output obtained. A UAV mission can be
defined as a number n of tasks to accomplish for a set of UAVs. A task could be
exploring a specific area or search for an object in a zone. One or more sensors or
payloads belonging to a particular UAV may be required to perform a task. Each
task must be performed in a specific geographic zone, at a specific time interval.

As can be seen in Figure 1, the GA receives as input a list of tasks to be performed
in specific zones ([Ti,z j]), and a set of UAVs that can be used to perform these tasks.
After the execution of the GA for an input mission, the output will be the possibles
assignments of UAVs to tasks ([Ti,z j,UAVk] where Ti is a task, z j is the zone where
the task is performed and UAVk UAV is a vehicle from the set of available UAVs).

To perform a mission, there are m available UAVs, each one with specific charac-
teristics such as fuel consumption rate, list of available payloads, an attribute indi-
cating if the UAV is able to fly within restricted zones, and a position (geographical
coordinates). A UAV can be equipped with one or more payloads that allows to
perform different types of tasks:

• Camera EO (Electro Optical): to take photos of large amplitude and long dis-
tance.

• Camera IR (Infra-red): to take photos and videos at night or in conditions of
very low luminosity. This sensor is also capable of performing thermal photos,
especially used to forest areas analysis and fire detection and prevention.

• Radar SAR (Synthetic Aperture Radar): to take images of an object allowing
its representation in 2D and 3D. It can be used to track a zone.
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3 GA for Mission Planning Problems

The Genetic Algorithm for Mission Planning Problems (GAMPP) is a genetic al-
gorithm to solve mission planning problems using a team of UAVs. This section
describes this algorithm, including the encoding, the fitness function, and the ge-
netic operators applied. The algorithm is implemented according to the structure of
a simple genetic algorithm as can be seen in Algorithm 1.

3.1 Encoding

A possible solution for a mission planning problem consists of the assignment of
each task to a specific UAV. If the mission contains a number N of tasks, the geno-
types (chromosomes) will be represented as a integer vector of size N. Each allele
represents a UAV assigned to a task. Therefore, if M is the number of UAVs to solve
the mission, the value of each allele is between 0 and M-1 (see Fig. 2). In this exam-
ple, two UAVs (UAV0 and UAV1) perform most of the tasks, meanwhile the rest of
tasks have been assigned to other UAVs, therefore they can be performed in parallel.

Fig. 2 Chromosome representing a solution for a mission planning problem. Each allele represents
a particular assignment of a UAV to a task of the mission. This example is the solution for a mission
that contains 9 tasks and 6 UAVs for accomplishing these tasks.

3.2 Genetic Algorithm

In the new approach used to solve mission plans, the population evolves using a
standard GA as it is shown in Algorithm 1. The algorithm performs an Elitism se-
lection method, where the n-best chromosomes of the population are copied to the
new population (line 8 in Algorithm 1). This prevents losing the n-best found solu-
tions. Finally the genetic operators work as follows:

• Crossover: One-point crossover operator is applied. Firstly, two individual are
selected by tournament as parents, and a randomly point from the genome is
chosen (see lines 11 and 12 in Algorithm 1). Then the information of both parents
is swapped from this point to create two new offspring.

• Mutation: Uniform mutation is applied. A value of the genome is randomly cho-
sen, and this value (with a predefined mutation probability) changes from 1 to M,
where M is the number of available UAVs. See lines 13 and 14 in Algorithm 1.



GAMPP: Genetic Algorithm for UAV Mission Planning Problems 5

Input: A mission M = (T,U) where T is a set of tasks to perform denoted by {t1, . . . , tn}
and U is a set of UAVs denoted by {u1, . . . ,um} representing the available vehicles to
perform the tasks. And positive numbers generations, population, µ , λ and
mut probability

Output: The chromosome Si = {a1,a2, . . . ,an} such that Fitness(Si) is maximized
S← randomly generated set of population of p chromosomes of size n, and the value of
each allele is from 1 to m
i← 1
convergence← 0
while i≤ generations∧ convergence = 0 do

F ← /0
for j← 1 to p do

F ← Fitness(S j)
end
Sbest← SelectNBest(λ ,F)
S← Sbest
for j← 1 to λ do

p1, p2← TournamentSelection(Sbest)
i1, i2← OnePointCrossover(p1, p2)
i1←Mutation(i1,mut probability)
i2←Mutation(i2,mut probability)
S← I∪{i1, i2}

end
i← i+1
convergence←CheckConvergence(Sbest)

end
return SelectBest(S,F)
Algorithm 1: Genetic Algorithm for Mission Planning Problems (GAMPP)

3.3 Fitness Function

The fitness function implemented consists of two distinct phases to evaluate the
generated individuals. Firstly, the criteria ensuring that the mission can be resolved
successfully are evaluated. Afterwards, the quality of the mission is measured. For
this purpose, the fitness function has been designed combining various measures
to find an assignment of UAVs to the mission tasks minimizing the fuel cost and
the makespan. To look for optimal solutions, a weighted function based on these
criteria is used. The weights can be changed in the algorithm settings, and the fitness
function is calculated as follows:

F(i) = (Mak(i) ·wmak +Fuel(i) ·w f uel) ·α (1)

Where wdur ∈ [0,1], w f uel ∈ [0,1], wdur +w f uel = 1 and α is defined as:
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α =
n

∏
i=0

checkPayloads(i) · checkDur(i) · isResZone(i) (2)

3.3.1 Validation Criteria

These criteria ensure that the mission can be solved successfully, avoiding invalid
solutions. Invalid solutions are discarded giving them the lowest value of the fitness
function, which is 0. To validate the solutions three types of constraints are checked:

• Payload Constraint: checks whether each UAV carries the corresponding pay-
load to perform the task assigned to it.

• Temporal Constraint: ensures that each UAV does not perform tasks at the same
time.

• Restricted Zone: checks whether only UAVs with permissions to fly within re-
stricted zones perform tasks developed in these restricted zones.

3.3.2 Optimization Criteria

Secondly, the quality of the solution is measured for valid individuals. A mission
performed with a lower duration and fuel consumed, is usually better. For this pur-
pose, the fitness function combines two different criteria:

• Makespan: Time required to perform the complete mission. The different UAVs
can perform tasks simultaneously. Therefore, the mission duration is given by the
time interval from the start time of the first task to the end time of the last task.

• Fuel cost: Sum of the fuel consumed by each UAV at performing its assigned
tasks. The fuel cost for a UAV k performing a task i is f ueli = f uelConsume ∗
distancek→z, being f uelConsume the fuel consumption rate per distance unit of
a UAV, and distancek→z the distance from position k to position z given in geo-
graphic coordinates (latitude, longitude and altitude). This distance is calculated
using the positions of the UAVs and the zones where tasks are performed.

4 Experimental Results

4.1 Dataset Description

In this work, 15 missions have been designed, each one composed by an increasing
number of tasks from 1 to 15. The first mission is composed of one task; the second,
two tasks; and so on up to 15, which is the most complex mission to solve. In order
to solve these missions, there are a set of UAVs with specific equipments. Each task
needs a particular payload to be performed, and each UAV has different available
types of payloads.



GAMPP: Genetic Algorithm for UAV Mission Planning Problems 7

4.2 Experimental Setup

The GA parameters and the weights of the fitness function were obtained experi-
mentally by performing several tests with different range of values. Table 1 shows
the parameters used throughout the experimental phase where µ +λ is the selection
criteria used, being λ the number of offspring (population size), and µ the number
of the best parents that survive from the current generation to the next.

Mutation probability 0.1
Generations 300
Population size 1000
Selection criteria (µ +λ ) 100+1000
Fitness function (w f uel) 0.7
Fitness function (wdur) 0.3

Table 1 Experimental setup for the genetic algorithm.

4.3 Results

Firstly, an analysis of the optimal solutions found is carried out. This can be seen in
Table 2. Considering the values obtained to the fitness function, they begin close to 1
(very close to the best possible value). However, these values decrease as the number
of tasks increase. Analysing the task assignments, as can bee seen in Figure 3, the
algorithm carries out an equitable distribution of tasks between different available
UAVs. There are several tasks performing in parallel, and therefore the mission
duration is lower. It means that as the complexity of the missions increases, the
quality of the optimal solution found decreases. But the algorithm is able to find
solutions performing the complete mission with enough quality.

Finally, to study the computational performance of the algorithm, the runtime
spent is compared with other approach based on a CSP model using Branch &
Bound (B&B) [9]. The same dataset and optimization function (0.7 ·Fuel(i)+0.3 ·
Mak(i)) is used in both approaches. The results obtained are represented in Figure 4.
The time difference observed is very high, being the time needed to assign 10 tasks
in the order of seconds (2,3 sec) to the genetic algorithm, whereas the CSP based
approach is in a order of minutes (4 min). It can be appreciated that the runtime of
the GA has a linear growth directly proportional to the number of tasks, whereas the
runtime spent in the approach based on CSPs grows exponentially.
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Task Number Fval Duration Fuel Consumed
1 0.964 20 min 10.341 L
2 0.967 20 min 16.568 L
3 0.971 30 min 18.791 L
4 0.978 50 min 25.463 L
5 0.985 65 min 36.583 L
6 0.981 65 min 49.036 L
7 0.983 60 min 55.708 L
8 0.978 50 min 76.724 L
9 0.957 120 min 127.095 L
10 0.907 135 min 181.803 L
11 0.901 135 min 211.715 L
12 0.899 135 min 227.060 L
13 0.899 200 min 249.076 L
14 0.858 200 min 253.859 L
15 0.858 200 min 255.859 L

Table 2 Optimal solutions found for missions with 1 to 15 tasks.

Fig. 3 Task assignments between the different available UAVs for solving the missions.

5 Conclusions and Future Work

In this work, a new mission planning algorithm for UAVs using GAs has been de-
signed and implemented. For this purpose, a model to generate UAV missions is
designed. Using this model, a mission is defined as a set of tasks to be performed in
specific zones by several UAVs with some capabilities. In order to guide the search
of possible solutions, a fitness function has been designed to look for optimal so-
lutions minimizing the fuel cost and the makespan. The new algorithm has been



GAMPP: Genetic Algorithm for UAV Mission Planning Problems 9

Fig. 4 Comparative assessment of runtime using other approach for the mission planning problem.

tested using several UAV missions, and the experimental results obtained are anal-
ysed. Regarding the quality of the solutions, the algorithm performs a task assign-
ment where the mission tasks are equitably distributed between the different UAVs
available. Additionally, a comparative assessment of runtime to solve the mission
planning problem is carried out. The experimental results obtained show that the
new approach reaches a better runtime than a previous approach based on CSPs.

Finally, some improvements can be made to the algorithm. It is important to
remark that the results obtained are highly dependant on the mission designed and
on the topology of the zones the missions are developed in. Therefore, further works
should consider different mission scenarios and topologies. In addition, the tactical
scenarios for the missions are on real-time and dynamic. Many changes can affect
the pre-loaded planning during its execution (UAVs failures, weather conditions,
new tasks, etc...). Therefore an on-line distributed variant of the algorithm could be
very useful.
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