Skip to main content

A Replicator Dynamics Approach to Collective Feature Engineering in Random Forests

  • Conference paper
  • First Online:
Research and Development in Intelligent Systems XXXII (SGAI 2015)

Abstract

It has been demonstrated how random subspaces can be used to create a Diversified Random Forest, which in turn can lead to better performance in terms of predictive accuracy. Motivated by the fact that each subsforest is built using a set of features that can overlap with those sets of features in other subforests, we hypothesise that using Replicator Dynamics can perform a collective feature engineering, by allowing subforests with better performance to grow and those with lower performance to shrink. In this paper, we propose a new method to further improve the performance of Diversified Random Forest using Replicator Dynamics which has been used extensively in evolutionary game dynamics. A thorough experimental study on 15 real datasets showed favourable results, demonstrating the potential of the proposed method. Some experiments reported a boost in predictive accuracy of over 10 % consistently, evidencing the effectiveness of the iterative feature engineering achieved through the Replicator Dynamics procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adeva, J.J.G., Beresi, U., Calvo, R.: Accuracy and diversity in ensembles of text categorisers. CLEI Electron. J. 9(1) (2005)

    Google Scholar 

  2. Bache, K., Lichman, M.: Uci machine learning repository (2013)

    Google Scholar 

  3. Bomze, I.M.: Lotka-volterra equation and replicator dynamics: new issues in classification. Biol. Cybern. 72(5), 447–453 (1995)

    Article  MATH  Google Scholar 

  4. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    MATH  Google Scholar 

  5. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  6. Brown, G., Wyatt, J., Harris, R., Yao, X.: Diversity creation methods: a survey and categorisation. Inf. Fusion 6(1), 5–20 (2005)

    Article  Google Scholar 

  7. Cuzzocrea, A., Francis, S.L., Gaber, M.M.: An information-theoretic approach for setting the optimal number of decision trees in random forests. In: Systems, Man, and Cybernetics (SMC), 2013 IEEE International Conference on, pp. 1013–1019. IEEE (2013)

    Google Scholar 

  8. Fawagreh, K., Gaber, M.M., Elyan, E.: Diversified random forests using random subspaces. In: Intelligent Data Engineering and Automated Learning–IDEAL 2014, pp. 85–92. Springer (2014)

    Google Scholar 

  9. Fawagreh, K., Gaber, M.M., Elyan, E.: Random forests: from early developments to recent advancements. Syst. Sci. Control Eng: Open Access J. |bf 2(1), 602–609 (2014)

    Google Scholar 

  10. Fernández-Delgado, M., Cernadas, E., Barro, S., Amorim, D.: Do we need hundreds of classifiers to solve real world classification problems? J. Mach. Learn. Res. 15, 3133–3181 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Galstyan, A.: Continuous strategy replicator dynamics for multi-agent Q-learning. Auton. Agents Multi-agent Syst. 26(1), 37–53 (2013)

    Article  Google Scholar 

  13. Hauert, C.: Replicator dynamics of reward & reputation in public goods games. J. Theor. Biol. 267(1), 22–28 (2010)

    Article  MathSciNet  Google Scholar 

  14. Hauert, C., De Monte, S., Hofbauer, J., Sigmund, K.: Replicator dynamics for optional public good games. J. Theor. Biol. 218(2), 187–194 (2002)

    Article  MathSciNet  Google Scholar 

  15. Hilbe, C.: Local replicator dynamics: a simple link between deterministic and stochastic models of evolutionary game theory. Bull. Math. Biol. 73(9), 2068–2087 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hofbauer, J., Sigmund, K.: Evolutionary game dynamics. Bull. Am. Math. Soc. 40(4), 479–519 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hutson, V., Schmitt, K.: Permanence and the dynamics of biological systems. Math. Biosci. 111(1), 1–71 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kuncheva, L.I., Whitaker, C.J.: Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Mach. Learn. 51(2), 181–207 (2003)

    Article  MATH  Google Scholar 

  19. Lohmann, G., Bohn, S.: Using replicator dynamics for analyzing fMRI data of the human brain. IEEE Trans. Med. Imag. 21(5), 485–492 (2002)

    Article  Google Scholar 

  20. Maclin, R., Opitz, D.: Popular ensemble methods: an empirical study. arXiv:1106.0257 (2011) (preprint)

  21. Nowak, M.A., Sigmund, K.: Evolutionary dynamics of biological games. Science 303(5659), 793–799 (2004)

    Article  Google Scholar 

  22. Olfati-Saber, R.: Evolutionary dynamics of behavior in social networks. In: Decision and Control, 2007 46th IEEE Conference on, pp. 4051–4056. IEEE (2007)

    Google Scholar 

  23. Polikar, R.: Ensemble based systems in decision making. Circuits Syst. Mag. IEEE 6(3), 21–45 (2006)

    Article  Google Scholar 

  24. Roca, C.P., Cuesta, J.A., Sánchez, A.: Evolutionary game theory: temporal and spatial effects beyond replicator dynamics. Phys. Life Rev. 6(4), 208–249 (2009)

    Article  Google Scholar 

  25. Rokach, L.: Ensemble-based classifiers. Artif. Intell. Rev. 33(1–2), 1–39 (2010)

    Article  Google Scholar 

  26. Tang, E.K., Suganthan, P.N., Yao, X.: An analysis of diversity measures. Mach. Learn. 65(1), 247–271 (2006)

    Article  Google Scholar 

  27. Taylor, P.D., Jonker, L.B.: Evolutionary stable strategies and game dynamics. Math. Biosci. 40(1), 145–156 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wolpert, D.H.: Stacked generalization. Neural Netw. 5(2), 241–259 (1992)

    Article  Google Scholar 

  29. Yan, W., Goebel, K.F.: Designing classifier ensembles with constrained performance requirements. In: Defense and Security, pp. 59–68. International Society for Optics and Photonics (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Medhat Gaber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Fawgreh, K., Gaber, M.M., Elyan, E. (2015). A Replicator Dynamics Approach to Collective Feature Engineering in Random Forests. In: Bramer, M., Petridis, M. (eds) Research and Development in Intelligent Systems XXXII. SGAI 2015. Springer, Cham. https://doi.org/10.1007/978-3-319-25032-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25032-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25030-4

  • Online ISBN: 978-3-319-25032-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics