Skip to main content

CLUB-DRF: A Clustering Approach to Extreme Pruning of Random Forests

  • Conference paper
  • First Online:

Abstract

Random Forest (RF) is an ensemble supervised machine learning technique that was developed by Breiman over a decade ago. Compared with other ensemble techniques, it has proved its superiority. Many researchers, however, believe that there is still room for enhancing and improving its performance accuracy. This explains why, over the past decade, there have been many extensions of RF where each extension employed a variety of techniques and strategies to improve certain aspect(s) of RF. Since it has been proven empirically that ensembles tend to yield better results when there is a significant diversity among the constituent models, the objective of this paper is twofold. First, it investigates how data clustering (a well known diversity technique) can be applied to identify groups of similar decision trees in an RF in order to eliminate redundant trees by selecting a representative from each group (cluster). Second, these likely diverse representatives are then used to produce an extension of RF termed CLUB-DRF that is much smaller in size than RF, and yet performs at least as good as RF, and mostly exhibits higher performance in terms of accuracy. The latter refers to a known technique called ensemble pruning. Experimental results on 15 real datasets from the UCI repository prove the superiority of our proposed extension over the traditional RF. Most of our experiments achieved at least 92 % or above pruning level while retaining or outperforming the RF accuracy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adeva, J.J.G., Beresi, U., Calvo, R.: Accuracy and diversity in ensembles of text categorisers. CLEI Electron. J. 9(1) (2005)

    Google Scholar 

  2. Amit, Y., Geman, D.: Shape quantization and recognition with randomized trees. Neural Comput. 9(7), 1545–1588 (1997)

    Article  Google Scholar 

  3. Bache, K., Lichman, M.: Uci Machine Learning Repository. University of California, Irvine (2013)

    Google Scholar 

  4. Bakker, B., Heskes, T.: Clustering ensembles of neural network models. Neural Netw. 16(2), 261–269 (2003)

    Article  Google Scholar 

  5. Bernard, S., Heutte, L., Adam, S.: On the selection of decision trees in random forests. In: International Joint Conference on Neural Networks. IJCNN 2009, pp. 302–307. June 2009

    Google Scholar 

  6. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    MATH  Google Scholar 

  7. Breiman, L.: Stacked regressions. Mach. Learn. 24(1), 49–64 (1996)

    MATH  Google Scholar 

  8. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  9. Brown, G., Wyatt, J., Harris, R., Yao, X.: Diversity creation methods: a survey and categorisation. Inf. Fusion 6(1), 5–20 (2005)

    Article  Google Scholar 

  10. Brown, R.D., Martin, Y.C.: An evaluation of structural descriptors and clustering methods for use in diversity selection. SAR QSAR Environ. Res. 8(1–2), 23–39 (1998)

    Article  Google Scholar 

  11. Diao, R., Chao, F., Peng, T., Snooke, N., Shen, Q.: Feature selection inspired classifier ensemble reduction. Cybern. IEEE Trans. 44(8), 1259–1268 (2014)

    Article  Google Scholar 

  12. Ester, M., Kriegel, H.-P., Sander, J., Xiaowei, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. KDD 96, 226–231 (1996)

    Google Scholar 

  13. Fleiss, J.L., Levin, B., Cho Paik, M.: Statistical Methods for Rates and Proportions. Wiley, New York (2013)

    MATH  Google Scholar 

  14. Freund, Y., Robert, E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Giacinto, G., Roli, F.: Design of effective neural network ensembles for image classification purposes. Image Vis. Comput. 19(9), 699–707 (2001)

    Article  Google Scholar 

  16. Giacinto, G., Roli, F., Fumera, G.: Design of effective multiple classifier systems by clustering of classifiers. In: Proceedings of 15th International Conference on Pattern Recognition, vol. 2, pp. 160–163. IEEE (2000)

    Google Scholar 

  17. Guha, S., Rastogi, R., Shim, K.: Cure: an efficient clustering algorithm for large databases. In: ACM SIGMOD Record, vol. 27, pp. 73–84. ACM (1998)

    Google Scholar 

  18. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA Data Mining Software: An Update, vol. 11. ACM, New York (2009)

    Google Scholar 

  19. Ho, T.H: Random decision forests. In: Proceedings of the Third International Conference on Document Analysis and Recognition, vol. 1, pp. 278–282. IEEE (1995)

    Google Scholar 

  20. Ho, T.K.: The random subspace method for constructing decision forests. Pattern Anal. Mach. Intell. IEEE Trans. 20(8), 832–844 (1998)

    Article  Google Scholar 

  21. Huang, Z.: Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Min. Knowl. Discov. 2(3), 283–304 (1998)

    Article  Google Scholar 

  22. Huang, Z., Ng, M.K.: A fuzzy k-modes algorithm for clustering categorical data. Fuzzy Syst. IEEE Trans. 7(4), 446–452 (1999)

    Article  Google Scholar 

  23. Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern Recognit. Lett. 31(8), 651–666 (2010)

    Article  Google Scholar 

  24. Kohavi, R., et al.: A study of cross-validation and bootstrap for accuracy estimation and model selection. IJCAI 14, 1137–1145 (1995)

    Google Scholar 

  25. Kohavi, R., Wolpert, D.H., et al.: Bias plus variance decomposition for zero-one loss functions. In: ICML, pp. 275–283 (1996)

    Google Scholar 

  26. Kulkarni, V.Y., Sinha, P.K.: Pruning of random forest classifiers: a survey and future directions. In: International Conference on Data Science Engineering (ICDSE), pp. 64–68, July 2012

    Google Scholar 

  27. Kuncheva, L.I., Hadjitodorov, S.T.: Using diversity in cluster ensembles. In: IEEE International Conference on Systems, Man and Cybernetics, vol. 2, pp. 1214–1219. IEEE (2004)

    Google Scholar 

  28. Kuncheva, L.I., Whitaker, C.J.: Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Mach. Learn. 51(2), 181–207 (2003)

    Article  MATH  Google Scholar 

  29. Lazarevic, A., Obradovic, Z.: Effective pruning of neural network classifier ensembles. In: Proceedings of International Joint Conference on Neural Networks. IJCNN’01, vol. 2, pp. 796–801. IEEE (2001)

    Google Scholar 

  30. Lee, J., Sun, Y., Nabar, R., Lou, H.-L.: Cluster-based transmit diversity scheme for mimo ofdm systems. In: IEEE 68th Vehicular Technology Conference, VTC 2008-Fall, pp. 1–5. IEEE (2008)

    Google Scholar 

  31. Leo, B., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and regression trees. Wadsworth Int. Group (1984)

    Google Scholar 

  32. Li, J., Yi, Ke., Zhang, Q.: Clustering with diversity. In: Automata, Languages and Programming, pp. 188–200. Springer (2010)

    Google Scholar 

  33. Maclin, R., Opitz, D.: Popular ensemble methods: an empirical study. J. Artif. Intell. Res. 11(1–2), 169–198 (1999)

    MATH  Google Scholar 

  34. MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, p. 14. California (1967)

    Google Scholar 

  35. Mardia, K.V., Kent, J.T., Bibby, J.M.: Multivariate analysis (1980)

    Google Scholar 

  36. Ng, R.T., Han, J.: Clarans: a method for clustering objects for spatial data mining. Knowl. Data Eng. IEEE Trans. 14(5), 1003–1016 (2002)

    Article  Google Scholar 

  37. Pakhira, M.K.: A modified k-means algorithm to avoid empty clusters. Int. J. Recent Trends Eng. 1(1), 1 (2009)

    Google Scholar 

  38. Partridge, D., Krzanowski, W.: Software diversity: practical statistics for its measurement and exploitation. Inf. Softw. Technol. 39(10), 707–717 (1997)

    Article  Google Scholar 

  39. Polikar, R.: Ensemble based systems in decision making. Circuits Syst. Mag. IEEE 6(3), 21–45 (2006)

    Article  Google Scholar 

  40. Qiang, F., Shang-Xu, H., Sheng-Ying, Z.: Clustering-based selective neural network ensemble. J. Zhejiang Univ. Sci. A 6(5), 387–392 (2005)

    Google Scholar 

  41. Rokach, L.: Ensemble-based classifiers. Artif. Intell. Rev. 33(1–2), 1–39 (2010)

    Article  Google Scholar 

  42. San, O.M., Huynh, V.-N., Nakamori, Y.: An alternative extension of the k-means algorithm for clustering categorical data. Int. J. Appl. Math. Comput. Sci. 14(2), 241–248 (2004)

    MathSciNet  MATH  Google Scholar 

  43. Sharpton, T., Jospin, G., Wu, D., Langille, M., Pollard, K., Eisen, J.: Sifting through genomes with iterative-sequence clustering produces a large, phylogenetically diverse protein-family resource. BMC Bioinform. 13(1), 264 (2012)

    Article  Google Scholar 

  44. Shemetulskis, N.E., Dunbar Jr, J.B., Dunbar, B.W., Moreland, D.W., Humblet, C.: Enhancing the diversity of a corporate database using chemical database clustering and analysis. J. Comput.-Aided Mol. Des. 9(5), 407–416 (1995)

    Article  Google Scholar 

  45. Skalak, D.B.: The sources of increased accuracy for two proposed boosting algorithms. In: Proceedings of American Association for Artificial Intelligence, AAAI-96, Integrating Multiple Learned Models Workshop, vol. 1129, p. 1133. Citeseer (1996)

    Google Scholar 

  46. Smyth, P., Wolpert, D.: Linearly combining density estimators via stacking. Mach. Learn. 36(1–2), 59–83 (1999)

    Article  Google Scholar 

  47. Soto, V., Garcia-Moratilla, S., Martinez-Munoz, G., Hernández-Lobato, D., Suarez, A.: A double pruning scheme for boosting ensembles. Cybern. IEEE Trans. 44(12), 2682–2695 (2014). Dec

    Article  Google Scholar 

  48. Tang, EKe, Suganthan, P.N., Yao, X.: An analysis of diversity measures. Mach. Learn. 65(1), 247–271 (2006)

    Article  Google Scholar 

  49. Tsoumakas, G., Partalas, I., Vlahavas, I.: An ensemble pruning primer. In: Applications of supervised and unsupervised ensemble methods, pp. 1–13. Springer (2009)

    Google Scholar 

  50. Williams, G.: Use R: Data Mining with Rattle and R: the Art of Excavating Data for Knowledge Discovery. Springer, New York (2011)

    MATH  Google Scholar 

  51. Wolpert, D.H.: Stacked generalization. Neural Netw. 5(2), 241–259 (1992)

    Article  Google Scholar 

  52. Yan, W., Goebel, K.F.: Designing classifier ensembles with constrained performance requirements. In: Defense and Security, International Society for Optics and Photonics, pp. 59–68 (2004)

    Google Scholar 

  53. Zhang, T., Ramakrishnan, R., Livny, M.: Birch: an efficient data clustering method for very large databases. In: ACM SIGMOD Record, vol. 25, pp. 103–114. ACM (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Medhat Gaber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Fawagreh, K., Gaber, M.M., Elyan, E. (2015). CLUB-DRF: A Clustering Approach to Extreme Pruning of Random Forests. In: Bramer, M., Petridis, M. (eds) Research and Development in Intelligent Systems XXXII. SGAI 2015. Springer, Cham. https://doi.org/10.1007/978-3-319-25032-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25032-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25030-4

  • Online ISBN: 978-3-319-25032-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics