Abstract
The characteristic independence property of Poisson point processes gives an intuitive way to explain why a sequence of point processes becoming less and less repulsive can converge to a Poisson point process. The aim of this paper is to show this convergence for sequences built by superposing, thinning or rescaling determinantal processes. We use Papangelou intensities and Stein’s method to prove this result with a topology based on total variation distance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Coutin, L., Decreusefond, L.: Stein’s method for Brownian approximations. Commun. Stoch. Anal. 7, 349–372 (2013)
Decreusefond, L., Joulin, A., Savy, N.: Upper bounds on Rubinstein distances on configuration spaces and applications. Commun. Stoch. Anal. 4(3), 377–399 (2010). http://hal.archives-ouvertes.fr/hal-00347899/fr/
Decreusefond, L., Schulte, M., Thäle, C.: Functional Poisson approximation in Rubinstein distance. Annals of Probability (2015). http://de.arxiv.org/abs/1406.5484
Decreusefond, L., Vasseur, A.: Asymptotics of superpositions and thinnings of point processes, in preparation
Georgii, H.O., Yoo, H.J.: Conditional intensity and gibbsianness of determinantal point processes. J. Stat. Phys. 118, 55–84 (2004). http://arxiv.org/pdf/math/0401402v2.pdf
Gomez, J.S., Vasseur, A., Vergne, A., Decreusefond, L., Martins, P., Chen, W.: A case study on regularity in cellular network deployment. Wireless Communications Letters (2015)
Kallenberg, O.: Random Measures, 3rd edn. Academic Press, New York (1983)
Shirai, T., Takahashi, Y.: Random point fields associated with certain Fredholm determinants ii: Fermion shifts and their ergodic and Gibbs properties. Ann. Probab. 31(3), 1533–1564 (2003). http://www.jstor.org/stable/3481499
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Decreusefond, L., Vasseur, A. (2015). Asymptotics of Superposition of Point Processes. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2015. Lecture Notes in Computer Science(), vol 9389. Springer, Cham. https://doi.org/10.1007/978-3-319-25040-3_21
Download citation
DOI: https://doi.org/10.1007/978-3-319-25040-3_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-25039-7
Online ISBN: 978-3-319-25040-3
eBook Packages: Computer ScienceComputer Science (R0)