Abstract
We present a new algorithm for active learning of register automata. Our algorithm uses counterexample-guided abstraction refinement to automatically construct a component which maps (in a history dependent manner) the large set of actions of an implementation into a small set of actions that can be handled by a Mealy machine learner. The class of register automata that is handled by our algorithm extends previous definitions since it allows for the generation of fresh output values. This feature is crucial in many real-world systems (e.g. servers that generate identifiers, passwords or sequence numbers). We have implemented our new algorithm in a tool called Tomte.
The second author is supported by NWO project 612.001.216: Active Learning of Security Protocols (ALSEP). The remaining authors are supported by STW project 11763: Integrating Testing And Learning of Interface Automata (ITALIA). Some results from this paper appeared previously in the PhD thesis of the first author [1].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aarts, F.: Tomte: bridging the gap between active learning and real-world systems. Ph.D. thesis, Radboud University Nijmegen, October 2014
Aarts, F., Heidarian, F., Kuppens, H., Olsen, P., Vaandrager, F.: Automata learning through counterexample guided abstraction refinement. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 10–27. Springer, Heidelberg (2012)
Aarts, F., Howar, F., Kuppens, H., Vaandrager, F.: Algorithms for inferring register automata. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014, Part I. LNCS, vol. 8802, pp. 202–219. Springer, Heidelberg (2014)
Aarts, F., Jonsson, B., Uijen, J., Vaandrager, F.W.: Generating models of infinite-state communication protocols using regular inference with abstraction. FMSD 46(1), 1–41 (2015)
Aarts, F., de Ruiter, J., Poll, E.: Formal models of bank cards for free. In: Software Testing Verification and Validation Workshop, pp. 461–468. IEEE (2013)
Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2), 87–106 (1987)
Bollig, B., Katoen, J.-P., Kern, C., Leucker, M., Neider, D., Piegdon, D.R.: Libalf: the automata learning framework. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 360–364. Springer, Heidelberg (2010)
Cassel, S., Howar, F., Jonsson, B., Merten, M., Steffen, B.: A succinct canonical register automaton model. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 366–380. Springer, Heidelberg (2011)
Cassel, S., Howar, F., Jonsson, B., Merten, M., Steffen, B.: A succinct canonical register automaton model. J. Logic Algebraic Methods Program. 84(1), 54–66 (2015)
Cassel, S., Howar, F., Jonsson, B., Steffen, B.: Learning extended finite state machines. In: Giannakopoulou, D., Salaün, G. (eds.) SEFM 2014. LNCS, vol. 8702, pp. 250–264. Springer, Heidelberg (2014)
Chalupar, G., Peherstorfer, S., Poll, E., de Ruiter, J.: Automated reverse engineering using Lego. In: WOOT 2014, IEEE Computer Society, August 2014
Cho, C., Babic, D., Shin, E., Song, D.: Inference and analysis of formal models of botnet command and control protocols. In: CCS, pp. 426–439. ACM (2010)
Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)
Fiterau-Brostean, P., Janssen, R., Vaandrager, F.: Learning fragments of the TCP network protocol. In: Lang, F., Flammini, F. (eds.) FMICS 2014. LNCS, vol. 8718, pp. 78–93. Springer, Heidelberg (2014)
Koopman, P., Achten, P., Plasmeijer, R.: Model-based shrinking for state-based testing. In: McCarthy, J. (ed.) TFP 2013. LNCS, vol. 8322, pp. 107–124. Springer, Heidelberg (2014)
Bryant, R.E.: A view from the engine room: computational support for symbolic model checking. In: Grumberg, O., Veith, H. (eds.) 25 years of Model Checking. LNCS, vol. 5000, pp. 145–149. Springer, Heidelberg (2008)
de la Higuera, C.: Grammatical Inference: Learning Automata and Grammars. Cambridge University Press, Cambridge (2010)
Howar, F., Steffen, B., Jonsson, B., Cassel, S.: Inferring canonical register automata. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 251–266. Springer, Heidelberg (2012)
Howar, F., Isberner, M., Steffen, B., Bauer, O., Jonsson, B.: Inferring semantic interfaces of data structures. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part I. LNCS, vol. 7609, pp. 554–571. Springer, Heidelberg (2012)
Isberner, M., Howar, F., Steffen, B.: Learning register automata: from languages to program structures. Mach. Learn. 96(1–2), 65–98 (2014)
Merten, M., Steffen, B., Howar, F., Margaria, T.: Next Generation LearnLib. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 220–223. Springer, Heidelberg (2011)
Peled, D., Vardi, M.Y., Yannakakis, M.: Black box checking. In: FORTE, IFIP Conference Proceedings, vol. 156, pp. 225–240. Kluwer (1999)
Raffelt, H., Merten, M., Steffen, B., Margaria, T.: Dynamic testing via automata learning. STTT 11(4), 307–324 (2009)
Raffelt, H., Steffen, B., Berg, T., Margaria, T.: LearnLib: a framework for extrapolating behavioral models. STTT 11(5), 393–407 (2009)
Steffen, B., Howar, F., Merten, M.: Introduction to active automata learning from a practical perspective. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 256–296. Springer, Heidelberg (2011)
Tijssen, M.: Automatic modeling of SSH implementations with state machine learning algorithms. Bachelor thesis, Radboud University, Nijmegen, June 2014
Volpato, M., Tretmans, J.: Active learning of nondeterministic systems from an ioco perspective. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014, Part I. LNCS, vol. 8802, pp. 220–235. Springer, Heidelberg (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Aarts, F., Fiterau-Brostean, P., Kuppens, H., Vaandrager, F. (2015). Learning Register Automata with Fresh Value Generation. In: Leucker, M., Rueda, C., Valencia, F. (eds) Theoretical Aspects of Computing - ICTAC 2015. ICTAC 2015. Lecture Notes in Computer Science(), vol 9399. Springer, Cham. https://doi.org/10.1007/978-3-319-25150-9_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-25150-9_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-25149-3
Online ISBN: 978-3-319-25150-9
eBook Packages: Computer ScienceComputer Science (R0)