Skip to main content

A Divergence Measure Between Mass Functions

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9403))

  • 2977 Accesses

Abstract

Evidence theory is widely used in data mining, machine learning, clustering and database systems. In these applications, often combination of mass functions is performed without checking the degree of consistency between the mass functions, which may lead to counterintuitive results. In this paper, we aim to measure the divergences among mass functions which can hence prevent highly inconsistent mass functions from been combined. To this end, we propose a divergence measure between two mass functions. In addition, incompleteness measures and similarity measures are also provided based on divergence measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anand, S., Bell, D., Hughes, J.: Edm: A general framework for data mining based on evidence theory. Data & Knowledge Engineering 18(3), 189–223 (1996)

    Article  MATH  Google Scholar 

  2. Aslandogan, Y., Mahajani, G., Taylor, S.: Inter. Conf. on Information Technology: Coding and Computing. Chapter Evidence Combination in Medical Data Mining, vol. 2 (2004)

    Google Scholar 

  3. Bi, Y., Guan, J., Bell, D.: The combination of multiple classifiers using an evidential reasoning approach. Artif. Intell. 172(15), 1731–1751 (2008)

    Article  MATH  Google Scholar 

  4. Daniel, M.: Belief functions: a revision of plausibility conflict and pignistic conflict. In: Subrahmanian, V.S., Liu, W., Wijsen, J. (eds.) SUM 2013. LNCS(LNCS), vol. 8078, pp. 190–203. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  5. Daniel, M.: Properties of plausibility conflict of belief functions. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS(LNAI), vol. 7894, pp. 235–246. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  6. Daniel, M., Ma, J.: Conflicts of belief functions: continuity and frame resizement. In: Calì, A., Straccia, U. (eds.) SUM 2014. LNCS, vol. 8720, pp. 106–119. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  7. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. The Annals of Statistics 28, 325–339 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  8. Diaz, J., Rifqi, M., Bouchon-Meunier, B.: A similarity measure between basic belief assignments. In: Proceedings of the 9th International Conference on Information Fusion, pp. 1–6, July 2006

    Google Scholar 

  9. Dubois, D., Prade, H.: Representation and combination of uncertainty with belief functions and possibility measures. Comput. Intel. 4, 244–264 (1988)

    Article  Google Scholar 

  10. He, D., Göker, A., Harper, D.: Combining evidence for automatic web session identification. Information Processing & Management 38(5), 727–742 (2002)

    Article  MATH  Google Scholar 

  11. Hegarat-Mascle, S., Bloch, I., Vidal-Madjar, D.: Application of dempster-shafer evidence theory to unsupervised classification in multisource remote sensing. IEEE transactions on geoscience and remote sensing 35(4), 795–979 (1997)

    Google Scholar 

  12. Josang, A.: The consensus operator for combining beliefs. Artificial Intelligence 141(1–2), 157–170 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jousselme, A., Grenier, D., Bosse, E.: A new distance between two bodies of evidence. Information Fusion 2(2), 91–101 (2001)

    Article  Google Scholar 

  14. Jousselme, A., Maupin, P.: Distances in evidence theory: Comprehensive survey and generalizations. International Journal of Approximate Reasoning 53(2), 118–145 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu, W.: Analyzing the degree of conflict among belief functions. Artificial Intelligence 170, 909–924 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ma, J., Liu, W., Dubois, D., Prade, H.: Bridging jeffery’s rule, agm revision, and dempster conditioning in the theory of evidence. International Journal of Artificial Intelligence Tools 20(4), 691–720 (2011)

    Article  Google Scholar 

  17. Ma, J., Liu, W., Miller, P.: Event modelling and reasoning with uncertain information for distributed sensor networks. In: Deshpande, A., Hunter, A. (eds.) SUM 2010. LNCS, vol. 6379, pp. 236–249. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Ma, J., Liu, W., Miller, P.: Evidential fusion for gender profiling. In: Link, S., Fober, T., Seeger, B., Hüllermeier, E. (eds.) SUM 2012. LNCS, vol. 7520, pp. 514–524. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  19. Ma, J., Liu, W., Miller, P.: An evidential improvement for gender profiling. In: Denoeux, T., Masson, M.-H. (eds.) Belief Functions: Theory and Applications. AISC, pp. 29–36. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  20. Ma, J., Liu, W., Miller, P., Yan, W.: Event composition with imperfect information for bus surveillance. In: Proc. of AVSS 2009, pp. 382–387 (2009)

    Google Scholar 

  21. Ma, W., Liu, W., Ma, J., Miller, P.: An extended event reasoning framework for decision support under uncertainty. In: Bouchon-Meunier, B., Yager, R.R., Laurent, A., Strauss, O. (eds.) IPMU 2014, Part III. CCIS, vol. 444, pp. 335–344. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  22. McClean, S., Scotney, B.: Using evidence theory for the integration of distributed databases. International Journal of Intelligent Systems 12(10), 763–776 (1998)

    Article  Google Scholar 

  23. Daniel, M.: Conflict between belief functions: a new measure based on their non-conflicting parts. In: Cuzzolin, F. (ed.) BELIEF 2014. LNCS(LNAI), vol. 8764, pp. 321–330. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  24. Perry, W., Stephanou, H.: Proc. of IEEE Inter. Symp. on Intelligent Control. Chapter Belief Function Divergence as a Classifier, pp. 280–285 (1991)

    Google Scholar 

  25. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press (1976)

    Google Scholar 

  26. Smarandache, F., Dezert, J.: An introduction to the dsm theory for the combination of paradoxical, uncertain, and imprecise sources of information. http://arxiv.org/abs/cs/0608002

  27. Smets, P.: Data fusion in the transferable belief model. In: Proceedings of International Conference on Information Fusion, Paris, July 2000

    Google Scholar 

  28. Smets, P., Kennes, R.: The transferable belief model. Artificial Intelligence 66(2), 191–234 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  29. Xie, Y., Phoha, V.: Procs. of 1st inter. conf. on knowledge capture, K-cap 2001, pp. 202–208. ACM (2001)

    Google Scholar 

  30. Yager, R.: On the relationships of methods of aggregation of evidence in expert systems. Cybernetics and Systems 16, 1–21 (1985)

    Article  MATH  Google Scholar 

  31. Yager, R.: On the dempster-shafer framework and new combination rules. Inform. Sci. 41, 93–138 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zadeh, L.: A simple view of the dempster-shafer theory of evidence and its implication for the rule of combination. AI Magazine 7, 85–90 (1986)

    Google Scholar 

  33. Zeng, D., Xu, J., Xu, G.: Data fusion for traffic incident detection using d-s evidence theory with probabilistic svms. Journal of Computers 3(10), 36–43 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianbing Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ma, J. (2015). A Divergence Measure Between Mass Functions. In: Zhang, S., Wirsing, M., Zhang, Z. (eds) Knowledge Science, Engineering and Management. KSEM 2015. Lecture Notes in Computer Science(), vol 9403. Springer, Cham. https://doi.org/10.1007/978-3-319-25159-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25159-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25158-5

  • Online ISBN: 978-3-319-25159-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics