Abstract
Stroke motor rehabilitation strategies using neuromodulation paradigms that take advantage of the motor predictive characteristics of the electroencephalographic signal are currently subject to extensive research. Such rehabilitation strategies follow a top-down approach, in which targeted neurophysiological changes in the central nervous system are expected to induce functional improvement. This chapter presents a series of studies regarding processing algorithms to detect motor intentionality and a neuromodulation paradigm to improve the upper-limb functionality. The experiments were developed and tested with stroke patients.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
H. Adams, T. Brott, R. Crowell, A. Burlan, C. Gomez, J. Grotta, E. Al, Guidelines for management of patient with acute ischemic stroke: a statement for healthcare profession from a special writing group of the stroke council. Stroke 25, 1901–1914 (1994)
O. Bai, Z. Mari, S. Vorbach, M. Hallett, Asymmetric spatiotemporal patterns of event-related desynchronization preceding voluntary sequential finger movements: a high-resolution EEG study. Clin. Neurophysiol. 116, 1213–1221 (2005)
J.M. Belda-Lois, S. Mena-del Horno, I. Bermejo-Bosch, J.C. Moreno, J.L. Pons, D. Farina, M. Iosa, F. Tamburella, A. Ramos Murguialday, A. Caria, T. Solis-Escalante, C. Brunner, M. Rea, Rehabilitation of gait after stroke: a review towards a top-down approach. J. Neuroeng. Rehabil. 8, 66 (2011)
M. Brus-ramer, J.B. Carmel, S. Chakrabarty, J.H. Martin, Electrical stimulation of spared corticospinal axons augments connections with ipsilateral spinal motor circuits after injury 27, 13793–13801 (2007)
E. Buch, C. Weber, L.G. Cohen, C. Braun, M.A. Dimyan, T. Ard, J. Mellinger, A. Caria, S. Soekadar, A. Fourkas, N. Birbaumer, Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke. Stroke 39, 910–917 (2008)
C. Calautti, J.-C. Baron, Functional neuroimaging studies of motor recovery after stroke in adults: a review. Stroke 34, 1553–1566 (2003)
J.J. Daly, Y. Fang, E.M. Perepezko, V. Siemionow, G.H. Yue, Prolonged cognitive planning time, elevated cognitive effort, and relationship to coordination and motor control following stroke. IEEE Trans. Neural Syst. Rehabil. Eng. 14, 168–171 (2006)
B.H. Dobkin, Strategies for stroke rehabilitation. Lancet Neurol. 3, 528–536 (2004)
Y. Fang, G.H. Yue, K. Hrovat, V. Sahgal, J.J. Daly, Abnormal cognitive planning and movement smoothness control for a complex shoulder/elbow motor task in stroke survivors. J. Neurol. Sci. 256, 21–29 (2007)
M. Fatourechi, R.K. Ward, G.E. Birch, A self-paced brain-computer interface system with a low false positive rate. J. Neural Eng. 5, 9–23 (2008)
G. Garipelli, R. Chavarriaga, R.J. del Millán, Single trial analysis of slow cortical potentials: a study on anticipation related potentials. J. Neural Eng. 10, 036014 (2013)
H. Hendricks, M. Zwarts, E. Plat, J. van Limbeek, No TitleSystematic review for the early prediction of motor and functional outcome after stroke by using motor-evoked potentials. Arch. Phys. Med. Rehabil. 83, 1303–1308 (2002)
J. Ibáñez, J.I. Serrano, M.D. del Castillo, J.A. Gallego, E. Rocon, Online detector of movement intention based on EEG. Application in tremor patients. Biomed. Signal Process. Control 8, 822–829 (2013)
J. Ibáñez, J.I. Serrano, M.D. del Castillo, E. Monge-Pereira, F. Molina-Rueda, I. Alguacil-Diego, J.L. Pons, Detection of the onset of upper-limb movements based on the combined analysis of changes in the sensorimotor rhythms and slow cortical potentials. J. Neural Eng. 11, 056009 (2014)
M. Jochumsen, I. Niazi, N. Mrachacz-Kersting, D. Farina, K. Dremstrup, Detection and classification of movement-related cortical potentials associated with task force and speed. J. Neural Eng. 10, 056015 (2013)
M. Jochumsen, I. Niazi, H. Rovsing, C. Rovsing, Detection of movement intentions through a single channel of electroencephalography 7 (2014)
S.-M. Lai, S. Studenski, P.W. Duncan, S. Perera, Persisting consequences of stroke measured by the stroke impact scale. Stroke 33, 1840–1844 (2002)
E. Lew, R. Chavarriaga, S. Silvoni, J.R. Millán, Detection of self-paced reaching movement intention from EEG signals. Front Neuroeng. 5, 13 (2012)
N. Mrachacz-Kersting, S.R. Kristensen, I. Niazi, D. Farina, Precise temporal association between cortical potentials evoked by motor imagination and afference induces cortical plasticity. J. Physiol. 590, 1669–1682 (2012)
J. Muro, J. Pedro-Cuesta, J. Almazan, W. Holmqvist, Stroke recovery in South Madrid. Function and motor recovery, resource utilization, and family support. Stroke 31, 1352–1359 (2000)
T.H. Murphy, D. Corbett, Plasticity during stroke recovery: from synapse to behaviour. Nat. Rev. Neurosci. 10, 861–872 (2009)
I. Niazi, N. Jiang, O. Tiberghien, J.F. Nielsen, K. Dremstrup, D. Farina, Detection of movement intention from single-trial movement-related cortical potentials. J. Neural Eng. 8, 066009 (2011)
I. Niazi, N. Mrachacz-Kersting, N. Jiang, K. Dremstrup, D. Farina, Peripheral electrical stimulation triggered by self-paced detection of motor intention enhances motor evoked potentials. IEEE Trans. Neural Syst. Rehabil. Eng. 20, 595–604 (2012)
R.J. Nudo, Mechanisms for recovery of motor function following cortical damage. Curr. Opin. Neurobiol. 16, 638–644 (2006)
G. Pfurtscheller, F.H.L. da Silva, Event-related EEG/EMG synchronization and desynchronization: basic principles. Clin. Neurophysiol. 110, 1842–1857 (1999)
G. Pfurtscheller, B. Graimann, J.E. Huggins, S.P. Levine, L.A. Schuh, Spatiotemporal patterns of beta desynchronization and gamma synchronization in corticographic data during self-paced movement. Clin. Neurophysiol. 114, 1226–1236 (2003)
G. Pfurtscheller, C. Brunner, A. Schlögl, F.H.L. da Silva, F.H. Lopes da Silva, Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks. Neuroimage 31, 153–159 (2006)
A. Ramos Murguialday, D. Broetz, M. Rea, L. Läer, O. Yilmaz, F.L. Brasil, G. Liberati, M.R. Curado, E. Garcia-Cossio, A. Vyziotis, W. Cho, M. Agostini, E. Soares, S. Soekadar, A. Caria, L.G. Cohen, N. Birbaumer, Brain-machine interface in chronic stroke rehabilitation: a controlled study. Ann. Neurol. (2013)
D.J. Serrien, L.H.A. Strens, M.J. Cassidy, A.J. Thompson, P. Brown, Functional significance of the ipsilateral hemisphere during movement of the affected hand after stroke. Exp. Neurol. 190, 425–432 (2004)
H. Shibasaki, M. Hallett, What is the Bereitschaftspotential? Clin. Neurophysiol. 117, 2341–2356 (2006)
K. Stefan, E. Kunesch, L.G. Cohen, R. Benecke, J. Classen, Induction of plasticity in the human motor cortex by paired associative stimulation. Brain 123(Pt 3), 572–584 (2000)
M. Stepien, J. Conradi, G. Waterstraat, F.U. Hohlefeld, G. Curio, V.V. Nikulin, Event-related desynchronization of sensorimotor EEG rhythms in hemiparetic patients with acute stroke. Neurosci. Lett. 488(1), 17–21 (2010)
A.K. Thompson, F.R. Pomerantz, J.R. Wolpaw, Operant conditioning of a spinal reflex can improve locomotion after spinal cord injury in humans. J. Neurosci. 33, 2365–2375 (2013)
G. Townsend, B. Grainmann, G. Pfurtscheller, Continuous EEG classification during motor imagery-simulation of an asynchronous BCI. IEEE Trans. Neural Syst. Rehabil. Eng. 12, 258–265 (2004)
B. Várkuti, C. Guan, Y. Pan, K.S. Phua, K.K. Ang, C.W.K. Kuah, K. Chua, B.T. Ang, N. Birbaumer, R. Sitaram, Resting state changes in functional connectivity correlate with movement recovery for BCI and robot-assisted upper-extremity training after stroke. Neurorehabil. Neural Repair 27, 53–62 (2013)
R. Xu, N. Jiang, N. Mrachacz-Kersting, C. Lin, G. Asin, J. Moreno, J. Pons, K. Dremstrup, D. Farina, A closed-loop brain-computer interface triggering an active ankle-foot orthosis for inducing cortical neural plasticity. IEEE Trans. Biomed. Eng. 9294, 1 (2014a)
R. Xu, N. Jiang, A. Vuckovic, M. Hasan, N. Mrachacz-Kersting, D. Allan, M. Fraser, B. Nasseroleslami, B. Conway, K. Dremstrup, D. Farina, Movement-related cortical potentials in paraplegic patients: abnormal patterns and considerations for BCI-rehabilitation. Front Neuroeng. 7, 35 (2014b)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 The Author(s)
About this chapter
Cite this chapter
Ibáñez, J., Serrano, J.I., Del Castillo, M.D., Monge, E., Molina, F., Pons, J.L. (2015). Heterogeneous BCI-Triggered Functional Electrical Stimulation Intervention for the Upper-Limb Rehabiliation of Stroke Patients. In: Guger, C., Müller-Putz, G., Allison, B. (eds) Brain-Computer Interface Research. SpringerBriefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-25190-5_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-25190-5_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-25188-2
Online ISBN: 978-3-319-25190-5
eBook Packages: Computer ScienceComputer Science (R0)