Abstract
The BDI (Belief-Desire-Intention) model is a well known reasoning architecture for intelligent agents. According to the original BDI approach, an agent is able to deliberate about what action to do next having only three main mental states: belief, desires and intentions. A BDI agent should be able to choose the more rational action to be done with bounded resources and incomplete knowledge in an acceptable time. As humans need emotions to make immediate decisions with incomplete information, some recent works have extending the BDI architecture in order to integrate emotions. However, as they only use logic to represent emotions, they are not able to define the intensity of the emotions. In this paper we present an implementation of the appraisal process of emotions into BDI agents using a BDI language that integrates logic and probabilistic reasoning. Hence, our emotional BDI implementation allows to differentiate between emotions and affective reactions. This is an important aspect because emotions tend to generate stronger response. Besides, the emotion intensity also determines the intensity of an individual reaction. In particular, we implement the event-based emotions with consequences for self based on the OCC cognitive psychological theory of emotions. We also present an illustrative scenario and its implementation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adam, C., Herzig, A., Longin, D.: A logical formalization of the OCC theory of emotions. Synthese 168(2), 201–248 (2009). http://www.springerlink.com/content/8t303657t3110h67
Bagozzi, R.P., Dholakia, U.M., Basuroy, S.: How effortful decisions get enacted: the motivating role of decision processes, desires, and anticipated emotions. J. Behav. Deci. Making 16(4), 273–295 (2003). http://dx.doi.org/10.1002/bdm.446
Baral, C., Hunsaker, M.: Using the probabilistic logic programming language p-log for causal and counterfactual reasoning and non-naive conditioning. In: Proceedings of the 20th International Joint Conference on Artifical Intelligence, IJCAI 2007, pp. 243–249. Morgan Kaufmann Publishers Inc., San Francisco (2007). http://dl.acm.org/citation.cfm?id=1625275.1625313
Bordini, R.H., Dastani, M., Dix, J., Seghrouchni, A.E.F. (eds.): Multi-Agent Programming: Languages, Platforms and Applications. Multiagent Systems, Artificial Societies, and Simulated Organizations, vol. 15. Springer, New York (2005). http://dro.dur.ac.uk/639/
Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems in AgentSpeak using Jason. Wiley Series in Agent Technology. Wiley, Chichester (2007)
Bratman, M.: What is intention? In: Cohen, P.R., Morgan, J.L., Pollack, M.E. (eds.) Intentions in Communications, pp. 15–31. Bradford books,MIT Press, Cambridge (1990)
Damasio, A.R.: Descartes’ Error : Emotion, Reason, and the Human Brain. G.P. Putnam, New York (1994)
Dias, J., Paiva, A.: I want to be your friend: establishing relations with emotionally intelligent agents. In: Proceedings of the 2013 International Conference on Autonomous Agents and Multi-agent Systems, AAMAS 2013, pp. 777–784. IFMAS, Richland (2013). http://dl.acm.org/citation.cfm?id=2484920.2485041
Ekman, P.: An argument for basic emotions. Cogn. Emot. 6(3–4), 169–200 (1992)
Gebhard, P.: Alma: a layered model of affect. In: Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS 2005, pp. 29–36. ACM, New York (2005). http://doi.acm.org/10.1145/1082473.1082478
Goleman, D.: Emotional Intelligence. Random House Publishing Group (2012). http://books.google.com.br/books?id=OgXxhmGiRB0C
Isen, A.M., Patrick, R.: The effect of positive feelings on risk taking: When the chips are down. Organ. Behav. Hum. Perform. 31(2), 194–202 (1983). http://www.sciencedirect.com/science/article/pii/0030507383901204
Izard, C.E.: Emotion-cognition relationships and human development. In: Izard, C.E., Kagan, J., Zajonc, R.B. (eds.) Emotions, Cognition, and Behavior, pp. 17–37. Social Science Research Council, Cambridge University Press (1984). http://books.google.com.br/books?id=IpY5AAAAIAAJ
Jaques, P.A., Vicari, R., Pesty, S., Martin, J.-C.: Evaluating a cognitive-based affective student model. In: D’Mello, S., Graesser, A., Schuller, B., Martin, J.-C. (eds.) ACII 2011, Part I. LNCS, vol. 6974, pp. 599–608. Springer, Heidelberg (2011)
Jiang, H., Vidal, J., Huhns, M.N.: International Conference On Autonomous Agents. ACM, New York (2007)
Korb, K., Nicholson, A.: Bayesian Artificial Intelligence. Chapman & Hall/CRC Computer Science & Data Analysis, Taylor & Francis (2003). http://books.google.com.br/books?id=I5JG767MryAC
Milch, B., Koller, D.: Probabilistic models for agents’ beliefs and decisions. In: Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence, UAI 2000, pp. 389–396. Morgan Kaufmann Publishers Inc., San Francisco (2000). http://dl.acm.org/citation.cfm?id=2073946.2073992
Moors, A., Ellsworth, P.C., Scherer, K.R., Frijda, N.H.: Appraisal Theories of Emotion: State of the Art and Future Development. Emotion Review 5(2), 119–124, May 2013. http://emr.sagepub.com/cgi/doi/10.1177/1754073912468165
Ortony, A., Clore, G.L., Collins, A.: The Cognitive Structure of Emotions. Cambridge University Press (1990). http://books.google.com.br/books?id=dA3JEEAp6TsC
Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers Inc., San Francisco (1988)
Picard, R.W.: Affective Computing. University Press Group Limited (2000). http://books.google.com.br/books?id=GaVncRTcb1gC
Plutchik, R.: A general psychoevolutionary theory of emotion. In: Plutchik, R., Kellerman, H. (eds.) Emotion: Theory, Research, and Experience, vol. 1(3), pp. 3–33. Academic Press, New York (1980)
Raghunathan, R., Pham, M.T.: All negative moods are not equal: Motivational influences of anxiety and sadness on decision making. Organizational Behavior and Human Decision Processes 79(1), 56–77 (1999)
Rao, A.S., Georgeff, M.: BDI agents: from theory to practice. Technical report Technical Note 56, Melbourne, Australia (1995)
Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall Series in Artificial Intelligence, Pearson Education/Prentice Hall (2010). http://books.google.com.br/books?id=8jZBksh-bUMC
Scherer, K.R.: Psychological models of emotion. In: Borod, J. (ed.) The Neuropsychology of Emotion, Chap. 6, vol. 137, pp. 137–162. Oxford University Press, Oxford (2000)
Scherer, K.R.: Appraisal theory. In: Dalgleish, T., Power, M. (eds.) Handbook of Cognition and Emotion, Chap. 30, vol. 19, pp. 637–663. Wiley (1999). http://psycnet.apa.org/psycinfo/2001-06810-001
Signoretti, A., Feitosa, A., Campos, A.M., Canuto, A.M., Xavier-Junior, J.C., Fialho, S.V.: Using an affective attention focus for improving the reasoning process and behavior of intelligent agents. In: Proceedings of the 2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology - Volume 02, WI-IAT 2011, pp. 97–100. IEEE Computer Society, Washington, DC (2011). http://dx.doi.org/10.1109/WI-IAT.2011.81
Silva, D., Gluz, J.: AgentSpeak(PL): a new programming language for BDI agents with integrated bayesian network model. In: 2011 International Conference on Information Science and Applications. IEEE (2011)
Steunebrink, B.R., Dastani, M., Meyer, J.J.: A formal model of emotions: Integrating qualitative and quantitative aspects. In: European Conference on Artificial Intelligence, ECAI 2008, vol. 178, pp. 256–260. IOS Press, Patras, Greece (2008). doi:10.3233/978-1-58603-891-5-256
Steunebrink, B., Dastani, M., Meyer, J.J.: A formal model of emotion triggers: an approach for bdi agents. Synthese 185(1), 83–129 (2012). http://dx.doi.org/10.1007/s11229-011-0004-8
Van Dyke Parunak, H., Bisson, R., Brueckner, S., Matthews, R., Sauter, J.: A model of emotions for situated agents. In: Proceedings of the Fifth International Joint Conference on Autonomous Agents and Multiagent Systems AAMAS 2006, p. 993 (2006). http://portal.acm.org/citation.cfm?doid=1160633.1160810
Wooldridge, M.: An Introduction to MultiAgent Systems. Wiley, Chichester (2009)
Wooldridge, M.: Intelligent agents. In: Weiss, G. (ed.) Multiagent Systems, pp. 27–77. MIT Press, Cambridge (1999). http://dl.acm.org/citation.cfm?id=305606.305607
Acknowledgements
This work is supported by the following research funding agencies of Brazil: CAPES, CNPq, FAPERGS and RNP/CTIC.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Gluz, J.C., Jaques, P.A. (2015). A Probabilistic Approach to Represent Emotions Intensity into BDI Agents. In: Duval, B., van den Herik, J., Loiseau, S., Filipe, J. (eds) Agents and Artificial Intelligence. ICAART 2014. Lecture Notes in Computer Science(), vol 8946. Springer, Cham. https://doi.org/10.1007/978-3-319-25210-0_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-25210-0_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-25209-4
Online ISBN: 978-3-319-25210-0
eBook Packages: Computer ScienceComputer Science (R0)