Skip to main content

Learning Bayesian Random Cutset Forests

  • Conference paper
  • First Online:
Foundations of Intelligent Systems (ISMIS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9384))

Included in the following conference series:

Abstract

In the Probabilistic Graphical Model (PGM) community there is an interest around tractable models, i.e., those that can guarantee exact inference even at the price of expressiveness. Structure learning algorithms are interesting tools to automatically infer both these architectures and their parameters from data. Even if the resulting models are efficient at inference time, learning them can be very slow in practice. Here we focus on Cutset Networks (CNets), a recently introduced tractable PGM representing weighted probabilistic model trees with tree-structured models as leaves. CNets have been shown to be easy to learn, and yet fairly accurate. We propose a learning algorithm that aims to improve their average test log-likelihood while preserving efficiency during learning by adopting a random forest approach. We combine more CNets, learned in a generative Bayesian framework, into a generative mixture model. A thorough empirical comparison on real word datasets, against the original learning algorithms extended to our ensembling approach, proves the validity of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Source code is available at http://www.di.uniba.it/~ndm/dcsn/.

  2. 2.

    All experiments have been run on a 4-core Intel Xeon E312xx (Sandy Bridge) @2.0 GHz with 8 Gb of RAM and Ubuntu 14.04.1, kernel 3.13.0-39.

References

  1. Ammar, S., Leray, P., Defourny, B., Wehenkel, L.: Probability density estimation by perturbing and combining tree structured Markov networks. In: Sossai, C., Chemello, G. (eds.) ECSQARU 2009. LNCS, vol. 5590, pp. 156–167. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Choi, M.J., Tan, V.Y.F., Anandkumar, A., Willsky, A.S.: Learning latent tree graphical models. J. Mach. Learn. Res. 12, 1771–1812 (2011)

    MathSciNet  MATH  Google Scholar 

  4. Chow, C., Liu, C.: Approximating discrete probability distributions with dependence trees. IEEE Trans. Inf. Theory 14(3), 462–467 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  5. Criminisi, A., Shotton, J., Konukoglu, E.: Decision forests: a unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. Found. Trends Comput. Graph. Vis. 7, 81–227 (2011)

    Article  MATH  Google Scholar 

  6. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  7. Di Mauro, N., Vergari, A., Esposito, F.: Learning accurate cutset networks by exploiting decomposability. In: Gavanelli, M., Lamma, E., Riguzzi, F. (eds.) AI*IA 2015: Advances in Artificial Intelligence (2015)

    Google Scholar 

  8. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Mach. Learn. 29(2–3), 131–163 (1997)

    Article  MATH  Google Scholar 

  9. Haaren, J.V., Davis, J.: Markov network structure learning: a randomized feature generation approach. In: Proceedings of the 26th Conference on Artificial Intelligence. AAAI Press (2012)

    Google Scholar 

  10. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer, New York (2009)

    Book  MATH  Google Scholar 

  11. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  12. Lowd, D., Davis, J.: Learning Markov network structure with decision trees. In: Proceedings of the 10th IEEE International Conference on Data Mining, pp. 334–343. IEEE Computer Society Press (2010)

    Google Scholar 

  13. Lowd, D., Domingos, P.: Learning arithmetic circuits. CoRR, abs/1206.3271 (2012)

    Google Scholar 

  14. Lowd, D., Rooshenas, A.: Learning Markov networks with arithmetic circuits. In: Proceedings of the 16th International Conference on Artificial Intelligence and Statistics, JMLR Workshop Proceedings, vol. 31, pp. 406–414 (2013)

    Google Scholar 

  15. Lowd, D., Rooshenas, A.: The Libra Toolkit for Probabilistic Models. CoRR, abs/1504.00110 (2015)

    Google Scholar 

  16. Meilă, M., Jordan, M.I.: Learning with mixtures of trees. J. Mach. Learn. Res. 1, 1–48 (2000)

    MathSciNet  MATH  Google Scholar 

  17. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers Inc., San Francisco (1988)

    MATH  Google Scholar 

  18. Poon, H., Domingos, P.: Sum-product network: a new deep architecture. In: NIPS 2010 Workshop on Deep Learning and Unsupervised Feature Learning (2011)

    Google Scholar 

  19. Rahman, T., Kothalkar, P., Gogate, V.: Cutset networks: a simple, tractable, and scalable approach for improving the accuracy of chow-liu trees. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014, Part II. LNCS, vol. 8725, pp. 630–645. Springer, Heidelberg (2014)

    Google Scholar 

  20. Ridgeway, G.: Looking for lumps: boosting and bagging for density estimation. Comput. Stat. Data Anal. 38(4), 379–392 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rooshenas, A., Lowd, D.: Learning sum-product networks with direct and indirect variable interactions. In: Proceedings of the 31st International Conference on Machine Learning, JMLR Workshop and Conference Proceedings, pp. 710–718 (2014)

    Google Scholar 

  22. Roth, D.: On the hardness of approximate reasoning. Artif. Intell. 82(1–2), 273–302 (1996)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Work supported by the project PUGLIA@SERVICE (PON02 00563 3489339) financed by the Italian Ministry of University and Research (MIUR) and by the European Commission through the project MAESTRA, grant no. ICT-2013-612944.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Di Mauro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Di Mauro, N., Vergari, A., Basile, T.M.A. (2015). Learning Bayesian Random Cutset Forests. In: Esposito, F., Pivert, O., Hacid, MS., Rás, Z., Ferilli, S. (eds) Foundations of Intelligent Systems. ISMIS 2015. Lecture Notes in Computer Science(), vol 9384. Springer, Cham. https://doi.org/10.1007/978-3-319-25252-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25252-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25251-3

  • Online ISBN: 978-3-319-25252-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics