Abstract
Retweeting is the most prominent feature in online social networks. It allows users to reshare another user’s tweets for her followers and bring about second information diffusion. Predicting retweeting behaviors is an important and essential task for advertising product launch, hot event detection and analysis of human behavior. However, most of the methods and systems have been developed for modeling the retweeting behaviors, it has not been fully explored for this problem. In this paper, we first cast the problem of retweeting behaviors prediction as a classification task and propose a formally definition. We then systematically summarize and extract a lot of features, namely user status, content, temporal, and social tie information, for predicting users’ retweeting behaviors. We incorporate these features into Support Vector Machine (SVM) model for our prediction problem. Finally, we conduct extensive experiments on a real world dataset collected from Twitter to validate our proposed approach. Our experimental results demonstrate that our proposed model can improve prediction effectiveness by combining the extracted features compared to the baselines that do not.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abdullah, N.A., Nishioka, D., Tanaka, Y., Murayama, Y.: User’s Action and Decision Making of Retweet Messages towards Reducing Misinformation Spread during Disaster. Journal of Information Processing 23(1), 31–40 (2015)
Boyd, D., Golder, S., Lotan, G.: Tweet, tweet, retweet: Conversational aspects of retweeting on twitter. In: HICSS, pp. 1–10 (2010)
Yang, Z., Guo, J., Cai, K., Tang, J., Li, J., Zhang, L., Su, Z.: Understanding retweeting behaviors in social networks. In: CIKM, pp. 1633–1636 (2010)
Can, E.F., Oktay, H., Manmatha, R.: Predicting retweet count using visual cues. In: CIKM, pp. 1481–1484 (2013)
Cheng, J., Adamic, L., Dow, P.A., Kleinberg, J.M., Leskovec, J.: Can cascades be predicted? In: WWW, pp. 925–936 (2014)
Derczynski, L., Maynard, D., Aswani, N., Bontcheva, K.: Microblog-genre noise and impact on semantic annotation accuracy. In: HT, pp. 21–30 (2013)
Feng, W., Wang, J.: Retweet or not?: personalized tweet re-ranking. In: WSDM, pp. 577–586 (2013)
Kanavos, A., Perikos, I., Vikatos, P., Hatzilygeroudis, I., Makris, C., Tsakalidis, A.: Modeling ReTweet diffusion using emotional content. In: Iliadis, L. (ed.) AIAI 2014. IFIP AICT, vol. 436, pp. 101–110. Springer, Heidelberg (2014)
Liu, L., Tang, J., Han, J., Jiang, M., Yang, S.: Mining topic-level influence in heterogeneous networks. In: CIKM, pp. 199–208 (2010)
Luo, Z., Osborne, M., Tang, J., Wang, T.: Who will retweet me?: finding retweeters in Twitter. In: SIGIR, pp. 869–872 (2013)
Macskassy, S.A., Michelson, M.: Why do people retweet? anti-homophily wins the day! In: ICWSM (2011)
Naveed, N., Gottron, T., Kunegis, J., Alhadi, A.C.: Bad news travel fast: A content-based analysis of interestingness on twitter. In: WebSci, p. 8 (2011)
Peng, H.K., Zhu, J., Piao, D., Yan, R., Zhang, Y.: Retweet modeling using conditional random fields. In: ICDMW, pp. 336–343 (2011)
Petrovic, S., Osborne, M., Lavrenko, V.: RT to win! predicting message propagation in twitter. In: ICWSM (2011)
Suh, B., Hong, L., Pirolli, P., Chi, E.H.: Want to be retweeted? large scale analytics on factors impacting retweet in twitter network. In: SOCIALCOM, pp. 177–184 (2010)
Yang, S.H., Kolcz, A., Schlaikjer, A., Gupta, P.: Large-scale high-precision topic modeling on twitter. In: SIGKDD, pp. 1907–1916 (2014)
Zaman, T.R., Herbrich, R., Van Gael, J., Stern, D.: Predicting information spreading in twitter. In: NIPS, pp. 17599–17601 (2010)
Zhang, J., Liu, B., Tang, J., Chen, T., Li, J.: Social influence locality for modeling retweeting behaviors. In: IJCAI, pp. 2761–2767 (2013)
Zhang, Q., Gong, Y., Guo, Y., Huang, X.: Retweet behavior prediction using hierarchical dirichlet process. In: AAAI (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Jiang, B., Sha, Y., Wang, L. (2015). A Multi-view Retweeting Behaviors Prediction in Social Networks. In: Cheng, R., Cui, B., Zhang, Z., Cai, R., Xu, J. (eds) Web Technologies and Applications. APWeb 2015. Lecture Notes in Computer Science(), vol 9313. Springer, Cham. https://doi.org/10.1007/978-3-319-25255-1_62
Download citation
DOI: https://doi.org/10.1007/978-3-319-25255-1_62
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-25254-4
Online ISBN: 978-3-319-25255-1
eBook Packages: Computer ScienceComputer Science (R0)