Skip to main content

A Multi-view Retweeting Behaviors Prediction in Social Networks

  • Conference paper
  • First Online:
Web Technologies and Applications (APWeb 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9313))

Included in the following conference series:

Abstract

Retweeting is the most prominent feature in online social networks. It allows users to reshare another user’s tweets for her followers and bring about second information diffusion. Predicting retweeting behaviors is an important and essential task for advertising product launch, hot event detection and analysis of human behavior. However, most of the methods and systems have been developed for modeling the retweeting behaviors, it has not been fully explored for this problem. In this paper, we first cast the problem of retweeting behaviors prediction as a classification task and propose a formally definition. We then systematically summarize and extract a lot of features, namely user status, content, temporal, and social tie information, for predicting users’ retweeting behaviors. We incorporate these features into Support Vector Machine (SVM) model for our prediction problem. Finally, we conduct extensive experiments on a real world dataset collected from Twitter to validate our proposed approach. Our experimental results demonstrate that our proposed model can improve prediction effectiveness by combining the extracted features compared to the baselines that do not.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abdullah, N.A., Nishioka, D., Tanaka, Y., Murayama, Y.: User’s Action and Decision Making of Retweet Messages towards Reducing Misinformation Spread during Disaster. Journal of Information Processing 23(1), 31–40 (2015)

    Article  Google Scholar 

  2. Boyd, D., Golder, S., Lotan, G.: Tweet, tweet, retweet: Conversational aspects of retweeting on twitter. In: HICSS, pp. 1–10 (2010)

    Google Scholar 

  3. Yang, Z., Guo, J., Cai, K., Tang, J., Li, J., Zhang, L., Su, Z.: Understanding retweeting behaviors in social networks. In: CIKM, pp. 1633–1636 (2010)

    Google Scholar 

  4. Can, E.F., Oktay, H., Manmatha, R.: Predicting retweet count using visual cues. In: CIKM, pp. 1481–1484 (2013)

    Google Scholar 

  5. Cheng, J., Adamic, L., Dow, P.A., Kleinberg, J.M., Leskovec, J.: Can cascades be predicted? In: WWW, pp. 925–936 (2014)

    Google Scholar 

  6. Derczynski, L., Maynard, D., Aswani, N., Bontcheva, K.: Microblog-genre noise and impact on semantic annotation accuracy. In: HT, pp. 21–30 (2013)

    Google Scholar 

  7. Feng, W., Wang, J.: Retweet or not?: personalized tweet re-ranking. In: WSDM, pp. 577–586 (2013)

    Google Scholar 

  8. Kanavos, A., Perikos, I., Vikatos, P., Hatzilygeroudis, I., Makris, C., Tsakalidis, A.: Modeling ReTweet diffusion using emotional content. In: Iliadis, L. (ed.) AIAI 2014. IFIP AICT, vol. 436, pp. 101–110. Springer, Heidelberg (2014)

    Google Scholar 

  9. Liu, L., Tang, J., Han, J., Jiang, M., Yang, S.: Mining topic-level influence in heterogeneous networks. In: CIKM, pp. 199–208 (2010)

    Google Scholar 

  10. Luo, Z., Osborne, M., Tang, J., Wang, T.: Who will retweet me?: finding retweeters in Twitter. In: SIGIR, pp. 869–872 (2013)

    Google Scholar 

  11. Macskassy, S.A., Michelson, M.: Why do people retweet? anti-homophily wins the day! In: ICWSM (2011)

    Google Scholar 

  12. Naveed, N., Gottron, T., Kunegis, J., Alhadi, A.C.: Bad news travel fast: A content-based analysis of interestingness on twitter. In: WebSci, p. 8 (2011)

    Google Scholar 

  13. Peng, H.K., Zhu, J., Piao, D., Yan, R., Zhang, Y.: Retweet modeling using conditional random fields. In: ICDMW, pp. 336–343 (2011)

    Google Scholar 

  14. Petrovic, S., Osborne, M., Lavrenko, V.: RT to win! predicting message propagation in twitter. In: ICWSM (2011)

    Google Scholar 

  15. Suh, B., Hong, L., Pirolli, P., Chi, E.H.: Want to be retweeted? large scale analytics on factors impacting retweet in twitter network. In: SOCIALCOM, pp. 177–184 (2010)

    Google Scholar 

  16. Yang, S.H., Kolcz, A., Schlaikjer, A., Gupta, P.: Large-scale high-precision topic modeling on twitter. In: SIGKDD, pp. 1907–1916 (2014)

    Google Scholar 

  17. Zaman, T.R., Herbrich, R., Van Gael, J., Stern, D.: Predicting information spreading in twitter. In: NIPS, pp. 17599–17601 (2010)

    Google Scholar 

  18. Zhang, J., Liu, B., Tang, J., Chen, T., Li, J.: Social influence locality for modeling retweeting behaviors. In: IJCAI, pp. 2761–2767 (2013)

    Google Scholar 

  19. Zhang, Q., Gong, Y., Guo, Y., Huang, X.: Retweet behavior prediction using hierarchical dirichlet process. In: AAAI (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Jiang, B., Sha, Y., Wang, L. (2015). A Multi-view Retweeting Behaviors Prediction in Social Networks. In: Cheng, R., Cui, B., Zhang, Z., Cai, R., Xu, J. (eds) Web Technologies and Applications. APWeb 2015. Lecture Notes in Computer Science(), vol 9313. Springer, Cham. https://doi.org/10.1007/978-3-319-25255-1_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25255-1_62

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25254-4

  • Online ISBN: 978-3-319-25255-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics