
Exact bounds for distributed graph colouring

Joel Rybicki

Helsinki Institute for Information Technology HIIT,
Department of Computer Science, Aalto University

Department of Algorithms and Complexity,
Max Planck Institute for Informatics

joel.rybicki@aalto.fi

Jukka Suomela

Helsinki Institute for Information Technology HIIT,
Department of Computer Science, Aalto University

jukka.suomela@aalto.fi

Abstract. We prove exact bounds on the time complexity of distributed graph
colouring. If we are given a directed path that is properly coloured with n colours,
by prior work it is known that we can find a proper 3-colouring in 1

2 log∗(n) ± O(1)
communication rounds. We close the gap between upper and lower bounds: we show
that for infinitely many n the time complexity is precisely 1

2 log∗ n communication
rounds.

ar
X

iv
:1

50
2.

04
96

3v
2

 [
cs

.D
C

]
 2

6
Fe

b
20

15

1 Introduction

One of the key primitives in the area of distributed graph algorithms is graph colouring
in directed paths. This is a fundamental symmetry-breaking task, widely studied since
the 1980s—it is used as a subroutine in numerous efficient distributed algorithms, and
it also serves as a convenient starting point in many lower-bound proofs. In the 1990s it
was already established that the distributed computational complexity of this problem
is 1

2 log∗(n)±O(1) communication rounds [3,13]. We are now able to give exact bounds
on the distributed time complexity of this problem, and the answer turns out to take a
surprisingly elegant form:

Theorem 1. For infinitely many values of n, it takes exactly 1
2 log∗ n rounds to compute

a 3-colouring of a directed path.

1.1 Problem Setting

Throughout this work we focus on deterministic distributed algorithms. As is common
in this context, what actually matters is not the number of nodes but the range of their
labels. For the sake of concreteness, we study precisely the following problem setting:

We have a path or a cycle with any number of nodes, and the nodes are
properly coloured with colours from [n] = {1, 2, . . . , n}.

The techniques that we present in this work can also be used to analyse other variants of
the problem—for example, a cycle with n nodes that are labelled with some permutation
of [n], or a path with at most n nodes that are labelled with unique identifiers from [n].
However, the exact bounds on the time complexity will slightly depend on such details.

We will assume that there is a globally consistent orientation in the path: each
node has at most one predecessor and at most one successor. Our task is to find a
proper colouring of the path with c colours, for some number c ≥ 3. We will call this
task colour reduction from n to c.

We will use the following model of distributed computing. Each node of the graph
is a computational entity. Initially, each node knows the global parameters n and c, its
own label from [n], its degree, and the orientations of its incident edges. Computation
takes place in synchronous communication rounds. In each round, each node can send a
message to each of its neighbours, receive a message from each of its neighbours, update
its state, and possibly stop and output its colour. The running time of an algorithm is
defined to be the number of communication rounds until all nodes have stopped. We
will use the following notation:

• C(n, c) is the time complexity of colour reduction from n to c.

• T (n, c) is the time complexity of colour reduction from n to c if we restrict the
algorithm so that a node can only send messages to its successor. We call such
an algorithm one-sided, while unrestricted algorithms are two-sided.

We can compose colour reduction algorithms, yielding C(a, c) ≤ C(a, b) + C(b, c) and
T (a, c) ≤ T (a, b) + T (b, c) for any a ≥ b ≥ c. It is easy to see (shown in Lemma 2) that

C(n, c) = dT (n, c)/2e.

We will be interested primarily in C(n, c), but function T (n, c) is much more convenient
to analyse when we prove upper and lower bounds.

1

1.2 Prior Work

The asymptotically optimal bounds of

log∗(n)−O(1) ≤ T (n, 3) ≤ log∗(n) +O(1)

are covered in numerous textbooks and courses on distributed and parallel computing
[2,4,17,19,20]. The proof is almost unanimously based on the following classical results:

Cole–Vishkin colour reduction (CV): The upper bound was presented in the mod-
ern form by Goldberg, Plotkin, and Shannon [9] and it is based on the technique
first introduced by Cole and Vishkin [3]. The key ingredients are a fast colour
reduction algorithm that shows that T (2k, 2k) ≤ 1 for any k ≥ 3, and a slow
colour reduction algorithm that show that T (k + 1, k) ≤ 2 for any k ≥ 3. By
iterating the fast colour reduction algorithm, we can reduce the number of colours
from n to 6 in log∗(n)±O(1) rounds, and by iterating the slow colour reduction
algorithm, we can reduce the number of colours from 6 to 3 in 6 rounds (with
one-sided algorithms).

Linial’s lower bound: The lower bound is the seminal result by Linial [13]. The
key ingredient is a speed-up lemma that shows that T (n, 2c) ≤ T (n, c)− 1 when
T (n, c) ≥ 1. By iterating the speed-up lemma for log∗(n) − 3 times, we have
T (n, 4) ≥ T (n, k) + log∗(n) − 3 for a k < n. Clearly T (n, 3) ≥ T (n, 4) and
T (n, k) ≥ 1, and hence T (n, 3) ≥ log∗(n)− 2.

In the upper bound, many sources—including the original papers by Cole and
Vishkin and Goldberg et al.—are happy with the asymptotic bounds of log∗(n) +O(1)
or O(log∗ n). However, there are some sources that provide a more careful analysis. The
analysis by Barenboim and Elkin [2] yields T (n, 3) ≤ log∗(n) + 9, and the analysis in
the textbook by Cormen et al. [4] yields T (n, 3) ≤ log∗(n)+7. In our lecture course [19]
we had an exercise that shows how to push it down to

T (n, 3) ≤ log∗(n) + 6.

In the lower bound, there is less variation. Linial’s original proof [13] yields
T (n, 3) ≥ log∗(n)− 3, and many sources [2, 11,19] prove a bound of

T (n, 3) ≥ log∗(n)− 2.

On the side of lower bounds, nothing stronger than Linial’s result is known. There
are alternative proofs based on Ramsey’s theorem [5] that yield the same asymptotic
bound of T (n, 3) = Ω(log∗ n), but the constants one gets this way are worse than in
Linial’s proof.

On the side of upper bounds, however, there is an algorithm that is strictly bet-
ter than CV: Naor–Stockmeyer colour reduction (NS) [15]. While CV yields
T (2k, 2k) ≤ 1 for any k ≥ 3, NS yields a strictly stronger claim of T (

(
2k
k

)
, 2k) ≤ 1 for

any k ≥ 2. However, the exact bounds that we get from NS are apparently not analysed
anywhere, and their algorithm is hardly ever mentioned in the literature. Hence the
state of the art appears to be

log∗(n)− 2 ≤ T (n, 3) ≤ log∗(n) + 6,

1

2
log∗(n)− 1 ≤ C(n, 3) ≤ 1

2
log∗(n) + 3.

Note that we have log∗ n ≤ 5 for all n < 1019728, and hence in practice the constant
term 6 dominates the term log∗ n in the upper bound.

2

1.3 Contributions

In this work we derive exact bounds on C(n, 3) for infinitely many values of n, and
near-tight bounds for all values of n. We prove that for infinitely many values of n

C(n, 3) =
1

2
log∗ n,

and for all sufficiently large values of n

log∗(n)− 1 ≤ T (n, 3) ≤ log∗(n) + 1.

With C(n, 3) = dT (n, 3)/2e this gives a near-complete picture of the exact complexity
of colouring directed paths. The key new techniques are as follows:

1. We give a new analysis of NS colour reduction.

2. We give a new lower-bound proof that is strictly stronger than Linial’s lower
bound.

3. We show that computational techniques can be used to prove not only upper
bounds but also lower bounds on T (n, c), also for the case of a general n and not
just for fixed small values of n and c. We introduce successor graphs Si that are
defined so that a graph colouring of Si with a small number of colours implies an
improved bound on T (n, 3).

This work focuses on colour reduction, i.e., the setting in which we are given a proper
colouring as an input. Our upper bounds naturally apply directly in more restricted
problems (e.g., the input labels are unique identifiers). Our lower bounds results do not
hold directly, but the key techniques are still applicable: in particular, the successor
graph technique can be used also in the case of unique identifiers.

1.4 Applications

Graph colouring in paths, and the related problems of graph colouring in rooted trees and
directed pseudoforests, are key symmetry-breaking primitives that appear as subroutines
in numerous distributed algorithms for various graph problems [1, 5, 8, 9, 12,16].

One of the most direct application of our results is related to colouring trees: In
essence, colour reduction from n to c in trees with arbitrary algorithms is the same
problem as colour reduction from n to c in paths with one-sided algorithms. Informally,
in the worst case the children contain all possible coloured subtrees and hence “looking
down” in the tree is unhelpful, and we can equally well restrict ourselves to “looking up”
towards the root. Hence our bounds on T (n, 3) can be directly interpreted as bounds
on colour reduction from n to 3 in trees.

The bounds have also applications outside distributed computing. A result by Fich
and Ramachandran [6] demonstrates that bounds on C(n, 3) have direct implications
in the context of decision trees and parallel computing.

Indeed, the fastest known parallel algorithms for colouring linked lists are just
adaptations of CV and NS colour reduction algorithms. These algorithms reduce the
number of colours very rapidly to a relatively small number (e.g., dozens of colours),
and the key bottleneck has been pushing the number of colours down to 3. In particular,
reducing the number of colours down to 3 with state-of-the-art algorithms has been much

3

x0 x1 x2 x3 x4

x0 x1 x2

u outputs B(x0, . . . , x4)

v outputs A(x0, . . . , x4)

u

v
(a)

(b)

Figure 1: The difference of two-sided and one-sided algorithms. (a) A two-sided
algorithm A that runs for 2 rounds. (b) A one-sided algorithm B that runs for 2 rounds.

more expensive than reducing it to 4, but this phenomenon has not been understood
so far. Prior bounds on T (n, c) have not been able to show that the case of c = 3 is
necessarily more expensive than c = 4. Our improved bounds are strong enough to
separate T (n, 4) and T (n, 3).

From the perspective of practical algorithm engineering and programming, this
work shows that we should avoid CV colour reduction, but we can be content with NS
colour reduction; the former incurs a significant overhead (e.g., in terms of linear scans
over the data in parallel computing), but the latter is near-optimal.

2 Preliminaries

Sets and Functions. For any positive integer k, we use [k] to denote the set
{1, 2, . . . , k}. For any set X, we use 2X = {Y ⊆ X} to denote the powerset of
X. Define the iterated logarithm as

log(0)(x) = x,

log(i+1)(x) = log(i)(log x) for all i ≥ 0.

In this work, all logarithms are in base 2. Moreover, the log-star function is

log∗ x = min{i : log(i) x ≤ 1}.

Finally, we define the tetration, or a power tower, with base 2 as

02 = 1,

i+12 = 2(i2) for all i ≥ 0.

Algorithms. In this work, we focus on algorithms that run on directed paths. We
distinguish between two-sided and one-sided algorithms; see Figure 1. Two-sided
algorithms correspond to the usual notion of an algorithm in the LOCAL model: an
algorithm running for t rounds has to decide on its output using the information
available at most t hops away. Formally, a two-sided c-colouring algorithm corresponds
to a function

A : [n]2t+1 → [c].

4

x0 x1 x2 x3 x4

v outputs A(x0, . . . , x4)

u

v
(a)

(b)
x0 x1 x2 x3 x4

u outputs B(x0, . . . , x4)

Figure 2: The correspondence between two-sided and one-sided algorithms. (a) A
two-sided algorithm A that runs for 2 rounds. (b) A one-sided algorithm that runs in 4
rounds. Both nodes see the same information, so v can easily simulate B and u can
simulate A.

Moreover, as A outputs a proper colouring, the function satisfies A(x0, . . . , x2t) 6=
A(x1, . . . , x2t+1) when xi 6= xi+1 for all i ≥ 0.

In contrast to two-sided algorithms, one-sided algorithms are algorithms in which
nodes can only send messages to successors. Therefore, a one-sided algorithm that
runs in t rounds can only gather information from at most t predecessors. Formally, a
one-sided c-colouring algorithm B that runs for t steps corresponds to a function

B : [n]t+1 → [c],

which satisfies B(x0, . . . , xt) 6= B(x1, . . . , xt+1) when xi 6= xi+1 for all i ≥ 0.
It is now easy to see that C(n, c) = dT (n, c)/2e holds. Intuitively, the connection is

straightforward. For example, Figure 2 illustrates how a t-time two-sided algorithm
can gather the same information as a 2t-time one-sided algorithm. For the sake of
completeness, we now prove this formally.

Lemma 2. C(n, c) = dT (n, c)/2e.

Proof. First, we show that T (n, c) ≤ 2C(n, c). Let t = C(n, c) and A : [n]2t+1 → [c]
be a two-sided c-colouring algorithm that runs in time t. We construct a one-sided
c-colouring algorithm that runs in time 2t. Recall that a one-sided algorithm can only
receive messages from predecessors. Initially, every node sends its own colour to its
successor. Then for 2t − 1 rounds we send the colour received from the predecessor
to the successor—in the case that a node has no predecessors, the node can simply
simulate a properly coloured path preceding it. After 2t rounds the node knows its own
colour and the colours of its 2t predecessors, that is, a vector (x0, . . . , x2t) ∈ [n]2t+1.
Outputting the value A(x0, . . . , x2t) yields a proper colouring.

Second, we show that C(n, c) ≤ dT (n, c)/2e. Let t = dT (n, c)/2e andB : [n]T (n,c)+1 →
[c] a one-sided algorithm that only receives messages from predecessors. Every node
sends its colour to both neighbours and then forwards any messages in the t − 1
subsequent rounds. As 2t ≥ T (n, c), after t rounds every node knows the colours
(x0, . . . , xT (n,c)) in its local neighbourhood. Now the node can output B(x0, . . . , xT (n,c))
which gives a proper colouring.

Finally, since the time complexity has to be integral—there are no “half-rounds”—we
get that C(n, c) = dT (n, c)/2e.

5

3 The Upper Bound

In this section, we bound T (n, c) from above. To do this, we analyse the Naor–
Stockmeyer (NS) colour reduction algorithm [15]. The NS algorithm is one-sided, thus
yielding upper bounds for T (n, c).

Let us first recall the NS colour reduction algorithm. Let n ≤
(
2k
k

)
for some k ≥ 2

and fix an injection f : [n]→ X, where X = {Y ⊆ [2k] : |Y | = k}. That is, we interpret
all colours from [n] as distinct k-subsets of [2k].

The algorithm works as follows. First, all nodes send their colour to the successor.
Then a node with colour v receiving colour u from its predecessor will output

A(u, v) = min f(u) \ f(v).

It is easy to show that if u 6= v 6= w, then A(u, v) ∈ [2k] and A(u, v) 6= A(v, w) holds.
Thus, A is a one-sided colour reduction algorithm that reduces the number of colours
from

(
2k
k

)
to 2k colours in one round and we have that T

((
2k
k

)
, 2k
)

= 1 for any k ≥ 2.
The above algorithm cannot reduce the number of colours below 4. To reduce the

number of colours from four to three, we can use the following one-sided algorithm B
that outputs

B(u, v, w) =

{
min{1, 2, 3} \ {u,w} if v = 4,

v otherwise.

The algorithm uses two rounds and this is optimal by Lemma 8 in Section 4.
We now show the following upper bounds for T (n, c) using the NS colour reduction

algorithm.

Lemma 3. The function T satisfies the following:

(a) T
(
3
2 · 2

c, 3
2 · c

)
= 1 for any c = 4h, where h > 1,

(b) T
(
3
2 ·

r+42, 3
2 ·

42
)
≤ r for any r ≥ 0,

(c) T
(
3
2 ·

42, 3
)
≤ 5.

Proof.

(a) As discussed, the NS colour reduction algorithm shows that T
((

2k
k

)
, 2k
)

= 1 for
k ≥ 2. Recall the following bound for the central binomial coefficent(

2k

k

)
≥ 4k√

4k

and let 2k = 3c/2. Since c ≥ 8 it follows that(
2k

k

)
≥ (2 · 2)3c/4√

3c
=

2c/2√
3c
· 2c > 3

2
· 2c.

(b) To show the claim, it suffices to apply part (a) for r times.

(c) As
(
20
10

)
> 3

2 ·
42, we can reduce the number of colours to 4 in three rounds as

follows:
(
20
10

)

(
6
3

)

(
4
2

)
 4. By Lemma 8, the remaining two rounds can be

used to remove the fourth colour.

Theorem 4. T (h2, 3) ≤ T (h2 + 1, 3) ≤ h+ 1 holds for any h > 1.

Proof. The cases 2 ≤ h ≤ 4 follow from the proof of Lemma 3c. Suppose h = r + 4 for
some r > 0. By Lemma 3b and c we can get a 3-colouring in r + 5 = h+ 1 rounds.

6

4 The Lower Bound

In this section, we give a new lower bound for the time complexity of one-sided colour
reduction algorithms. The proof follows the basic idea of Linial’s proof [13] adapted to
the case of colour reduction, but we show a new lemma that can be used to tighten the
bound.

The proof is structured as follows. First, we show that T (n, 2c − 2) ≤ T (n, c)− 1,
that is, given a c-colouring algorithm, we can devise a faster algorithm that uses at
most 2c − 2 colours; this is just a minor tightening of the usual standard bound, and
should be fairly well-known. Second, we prove that a fast 3-colouring algorithm implies
a fast 16-colouring algorithm, more precisely, T (n, 16) ≤ T (n, 3) − 2; this is the key
contribution of this section. Together these yield the following new bound:

Theorem 5. For any h > 1, we have T (h2, 3) ≥ h.

4.1 The Speed-up Lemma

Lemma 6. If T (n, c) ≥ 1, then T (n, 2c − 2) ≤ T (n, c)− 1.

Proof. Let t = T (n, c) and A : [n]t+1 → [c] be a one-sided c-colouring algorithm. We
will construct a faster one-sided algorithm B as follows. Consider a node u and its
successor v. In t− 1 rounds, node u can find out the colours of its t− 1 predecessors
and its own colour, that is, some vector (x0, . . . , xt−1) ∈ [n]t. In particular, node u now
knows what information node v can gather in t rounds except the colour of v since A is
one-sided. However, u can enumerate all the possible outputs of v which give the set

B(x0, . . . , xt−1) =
{
A(x0, . . . , xt−1, y) : y 6= xt−1, y ∈ [n]

}
⊆ [c].

Clearly B(x0, . . . , xt−1) 6= ∅. We also have B(x0, . . . , xt−1) 6= [c]: For the sake of
contradiction, suppose otherwise. This would imply that v could output any value in
[c]. In particular, if u outputs A(z, x0, . . . , xt−1) = a for some z ∈ [n], we could pick
y ∈ [n] such that A(x0, . . . , xt−1, y) = a as well. However, this would contradict the
fact that A was a colouring algorithm. Hence there exists an injection f that maps any
possible set B(·) to a value in [2c − 2].

It remains to argue that no two adjacent nodes construct the same set. Suppose a
node u outputs set X and its successor v also outputs X. Now we can pick k ∈ X such
that

A(x0, . . . , xt−1, y) = k = A(x1, . . . , xt−1, y, y
′)

for some xt−1 6= y 6= y′ contradicting that A outputs a proper colouring. Therefore,
f ◦B is a one-sided (2c−2)-colouring algorithm that runs in time t−1 = T (n, c)−1.

Lemma 7. For any r > 0, we have T (r+32, 16) ≥ r + 1.

Proof. Fix r > 0. We repeatedly apply Lemma 6. Now suppose we have an algorithm
that reduces the number of colours from n to 16 = 32 in r rounds. That is, T (n, 32) ≤ r
holds for some n ≥ 3. From Lemma 6 it follows that

T (n, 32) ≤ r =⇒ T (n, 42− 2) ≤ r − 1

=⇒ · · ·
=⇒ T (n, 3+r2− 2) ≤ 0,

but as T (k, k−1) ≥ 1 for any k it follows that n < 3+r2. Thus, T (r+32, 16) ≥ r+ 1.

7

4.2 Proof of Theorem 5

In addition to the speed-up lemma, we need a few more lemmas that bound T (n, 3)
below for small values of n.

Lemma 8. T (4, 3) ≥ 2.

Proof. Let B′ : (u, v)→ {1, 2, 3} be a one-sided 3-colouring algorithm that runs in one
round. Now B′ yields a partitioning of the possible input pairs (u, v) where u 6= v. It
is simple to check that there always exists a pair (u, v) with u 6= v such that there also
exists some w 6= v satisfying B′(u, v) = B′(v, w).

Lemma 9. T (16, 3) ≥ 3.

Proof. As observed by Linial [13], we can show C(n, c) = t if the so-called neighbourhood
graph Nn,t has a chromatic number of c. While Linial analytically bounded the chromatic
number of such graphs, we can also compute their chromatic numbers exactly for small
values of n, c, and t; see [18] for a detailed discussion. We use the latter technique to
show the claimed bound. That is, the neighbourhood graph N7,1 is not 3-colourable.

The neighbourhood graph N7,1 = (V,E) is defined as follows. The set of vertices is

V = {(x0, x1, x2) ∈ [n]3 : x0 6= x1 6= x2, x0 6= x2},

where n = 7 and the set of edges is

E = {{u, v} : u, v ∈ V, u = (x0, x1, x2), v = (x1, x2, x3)}.

It is easy to check with a computer (e.g. using any off-the-shelf SAT or an IP solver)
that the graph N7,1 is not 3-colourable. Therefore, C(7, 3) > 1 and in particular
T (16, 3) ≥ T (7, 3) > 2.

To get a lower bound for 3-colouring, we show in the following sections that the
existence of a t-time one-sided 3-colouring algorithm implies a (t− 2)-time one-sided
16-colouring algorithm.

Lemma 10. For any n ≥ 16, it holds that T (n, 16) ≤ T (n, 3)− 2.

Now we have all the results for showing the lower bound.

Theorem 5. For any h > 1, we have T (h2, 3) ≥ h.

Proof. The cases r = 2 and r = 3 follow from Lemmas 8 and 9. For the remaining cases,
let h = r + 3 for some r > 0. Suppose T (h2, 3) = T (r+32, 3) < h. Then by Lemma 10
we would get that T (r+32, 16) < h− 2 = r + 1 which contradicts Lemma 7.

4.3 Proof of Lemma 10 via Successor Graphs

To prove Lemma 10, we analyse the chromatic number of so-called successor graphs—a
notion similar to Linial’s neighbourhood graphs [13]. In the following, given a binary
relation R, we will write x ∈ R(y) to mean (y, x) ∈ R.

8

Colouring Relations. Suppose A = A0 is a one-sided 3-colouring algorithm that
runs in t rounds. Let A1, . . . , At denote the one-sided algorithms given by iterating
Lemma 6 and Ck+1 ⊆ 2Ck be the set of colours output by algorithm Ak+1.

In the following, let t′ = t− k. Define the potential successor relation Sk ⊆ Ck ×Ck

to be a binary relation such that (x, y) ∈ Sk if there exists x0, . . . , xt′ where xi 6= xi+1

such that
Ak(x0, . . . , xt′−1) = x and Ak(x1, . . . , xt′) = y.

That is, in the output of algorithm Ak there can be an x-coloured node with a successor
of colour y. Moreover, define the output relation Rk ⊆ Ck×Ck+1 such that (x,X) ∈ Rk

if
Ak(x0, . . . , xt′−2, x) = X

for some x0, . . . , xt′−2 where xi 6= xi+1. That is, a node with colour x can output colour
X when executing Ak+1. From the construction of Ak+1 given in Lemma 6, we get
that Rk = {(x,X) : X ⊆ Sk(x), X 6= ∅}.
Lemma 11. Suppose X ∈ Rk(x), Y ∈ Rk(y), and y ∈ X for some x, y ∈ Ck, then
(X,Y) ∈ Sk+1 holds. Moreover, the converse holds.

Proof. As we have y ∈ X ⊆ Sk(x), this means that a node with colour x may have
a successor of colour y after executing algorithm Ak. Moreover, as X ∈ Rk(x) and
Y ∈ Rk(y) hold, then a node with colour x may output X and node with colour y may
output Y when executing Ak+1. Thus, after executing Ak+1 we may have a node with
colour X that has a successor with colour Y . Therefore, (X,Y) ∈ Sk+1.

To show the converse, suppose that (X,Y) ∈ Sk+1, that is, in some output of Ak+1

a node u with colour X having a successor v with colour Y . Now there must exist
some colour x that X ∈ Rk(x) and some colour y such that Y ∈ Rk(y). As v is a
successor of u, the algorithm Ak+1 outputs a set X consisting of all possible colours for
any successor of u, and thus, we have y ∈ X.

Successor Graphs. For any choice of A = A0, we can construct the successor
relation Sk and using this relation, we can define the successor graph of A to be the
graph Sk(A) = (Ck, Ek), where Ek = {{x, y} : (x, y) ∈ Sk}. These graphs have the
following property:

Lemma 12. Let Sk = (Ck, Sk) be the successor graph of A, and let t be the running
time of A. If f : Ck → [χ] is a proper colouring of Sk, then f ◦ Ak is a one-sided
χ-colouring algorithm that runs in t− k rounds. That is, T (n, χ) ≤ t− k.

Proof. Let u be the predecessor of v on a directed path. Now by definition,

Ak(x0, . . . , xt−1, u) = x 6= y = Ak(x1, . . . , xt−1, u, v)

=⇒ (x, y) ∈ Sk =⇒ f(x) 6= f(y).

Therefore, f ◦Ak is a one-sided χ-colouring algorithm.

In the next section, we show the following lemma from which Lemma 10 follows.

Lemma 13. For any t-time 3-colouring algorithm A, the successor graph S2(A) can
be coloured with 16 colours.

In particular, this holds for an optimal algorithm A with a running time of t =
T (n, 3). Together with Lemma 12, this implies Lemma 10. We next show how to prove
Lemma 13 in two ways: with computers, and without them.

9

4.4 A Human-Readable Proof of Lemma 13

We start by giving a traditional human-readable proof for Lemma 13. That is, we argue
that for any one-sided 3-colouring algorithm A = A0 the successor graph S2(A) can be
coloured with 16 colours. Later in Section 4.5, we give a computational proof of the
same result. In the following, we fix A and denote S2 = S2(A) for brevity.

Structural Properties. We start with the following observations.

Remark 1. Sets C0 and C1 satisfy

C0 ⊆ {1, 2, 3},
C1 ⊆

{
{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}

}
.

Remark 2. Relation S1 satisfies

S1(i) ⊆
{
X ∈ C1 : i /∈ X

}
,

S1({i, j}) ⊆
{
X ∈ C1 : {i, j} * X

}
.

Remark 3. Consider any X ⊆ C1 with
{
{1, 2}, {1, 3}, {2, 3}

}
⊆ X. Then there is no

x ∈ C1 with X ⊆ S1(x). Therefore A2 cannot output colour X, and hence X /∈ C2.

Hence graph S2 has |C2| ≤ 55 nodes: out of the 26 = 64 candidate colours, we can
exclude the empty set and 8 other sets identified in Remark 3. We will now partition
the remaining nodes in 16 colour classes (independent sets).

Colour Classes. There are four types of colour classes. First, for each ∅ 6= X ⊆ [3]
we define a singleton colour class

X0(X) =
{{
{x} : x ∈ X

}}
,

that is, an independent set of size 1. Then for each triple

(i, j, k) ∈
{

(1, 2, 3), (1, 3, 2), (2, 3, 1)}

we have three colour classes:

X1(i, j, k) =
{
X ∈ C2 :

{
{i, j}, {i, k}

}
⊆ X ⊆

{
{i, j}, {i, k}, {i}, {j}, {k}

}}
X2(i, j, k) =

{
X ∈ C2 :

{
{i, j}, {k}

}
⊆ X ⊆

{
{i, j}, {i}, {j}, {k}

}}
,

X3(i, j, k) =
{
X ∈ C2 :

{
{i, j}

}
⊆ X ⊆

{
{i, j}, {i}, {j}

}}
.

In total, there are 7 singleton colour classes, and 3× 3 other colour classes, giving in
total 16 colour classes. Figure 3 shows the complement of a supergraph of S2; each of
the above colour classes correspond to a clique in the complement graph.

It can be verified that each of the 55 possible nodes of S2 is included in exactly
one of the colour classes. It remains to be shown that each colour class is indeed an
independent set of S2.

The singleton classes form independent sets trivially. We handle each type of the
remaining colour classes separately. Recall that there is an edge {X,Y } in S2 if either
X ∈ S2(Y) or Y ∈ S2(X).

10

1 22 3

3

1 2 3
13

1 2
13

2 3
13

2 13

1 2
23

1 3
23

1 23

1 2 3
23

1 3

2

3 12

1 2 3
12

1 3
12

2 3
12

1

1 2 3

1 3
13 23

1 13
23

2 3
13 23

2 13
23

1 2
13 23

13 23
3 13
23

1 2 3
13 23

1 3
12 13

3 12
13

2 3
12 13

1 12
13

12 13

1 2
12 13

1 2 3
12 13

2 12
13

2 12

1 2
12

12

1 12

1 2 3
12 23

3 12
23

12 23

2 3
12 23

1 3
12 23

1 12
23

1 2
12 13

2 12
23

3 13

1 13

1 3
13

13

23

2 23

2 3
23

3 23

Figure 3: This illustrations shows the complement of a graph we call S∗2 . For any
algorithm A, the successor graph S2(A) is a subgraph of S∗2 , and hence, a proper
colouring of S∗2 is a proper colouring of S2(A). Each clique in the figure corresponds to
a colour class in S∗2 . We use a shorthand notation: for example, the circle labelled with
“1 2 12” is the node {{1}, {2}, {1, 2}}.

11

Lemma 14. The class X1(i, j, k) forms an independent set in S2.

Proof. Let X = X1(i, j, k). Observe that for any X ∈ X we have
{
{i, j}, {i, k}

}
⊆ X

and {j, k} /∈ X. From Remark 2 it easily follows that the relation S1 satisfies{
{i, j}, {i, k}

}
⊆ X ⊆ 2S1(x) =⇒ x = {j, k}.

In particular, we get that X ∈ X =⇒ X ∈ R1({j, k}).
In order to show that X is an independent set in S2, let Y and Z be vertices of

S2 such that Y ∈ S2(Z). First, if Y ∈ X , then Y ∈ R1({j, k}). In particular, this
means that {j, k} ∈ Z and we get that Z /∈ X . For the second case, suppose {j, k} /∈ Z.
This means that a node with colour Z cannot have a successor with colour {j, k} in
a colouring produced by A1. Thus, it must be that Y /∈ R1({j, k}). By the earlier
observation, we get that Y /∈ X .

Lemma 15. The class X2(i, j, k) is independent in S2.

Proof. Let X = X2(i, j, k). In this class, for everyX ∈ X it holds that
{
{i, j}, {k}

}
⊆ X.

From Remark 2 it follows that

{{i, j}, {k}} ⊆ X ⊆ 2S1(x) =⇒ x ∈ {{i, k}, {j, k}} .

Thus, X ∈ X =⇒ X ∈ R1({i, k}) ∪R1({j, k}).
In order to show that the class X forms an independent set in S2, suppose Y ∈ S2(Z)

for some Y, Z ∈ C2. First, if Y ∈ X , then we have that either {i, k} ∈ Z or {j, k} ∈ Z
so Z /∈ X . Second, if Z ∈ X , then

{
{i, k}, {j, k}

}
∩ Z = ∅. This means that a node

with colour Z cannot have successor of colour {i, k} or {j, k} as a successor, hence
Y /∈ R1({i, k}) ∪R1({j, k}).

Lemma 16. The class X3(i, j, k) forms an independent set in S2.

Proof. Let X = X3(i, j, k). Observe that for any X ∈ X it holds that {i, j} ∈ X and{
{i, k}, {j, k}, {k}

}
∩X = ∅. Using Remark 2 we can check that relation S1 satisfies

X ⊆ 2S1(x) =⇒ x = k.

Thus, X ∈ X =⇒ X ∈ R1(k).
To see that X is an independent set in S2, let Y ∈ S1(Z). There are two cases to

consider. First, if Y ∈ X , then Y ∈ R1(k). That is a node with colour k can output
colour Y . Thus, k ∈ Z, so we must have that Z /∈ X . Second, if Z ∈ X , then k /∈ Z
which means that Y /∈ R1(k). Thus, Y /∈ X .

4.5 Computational Proof of Lemma 13

We now give a computational proof of Lemma 13, that is, we show how to easily
verify with a computer that the claim holds. Essentially this amounts to checking that
for every choice of A = A0, the successor graph S2(A) is colourable with 16 colours.
However, since any successor graph S2(A) depends on the choice of initial one-sided
3-colouring algorithm A = A0, and there are potentially many choices for A, we instead
bound the chromatic number of a closely-related graph S∗2 that contains S2(A) for any
A as a subgraph.

12

To construct the graph S∗2 , we consider the successor graph of a “worst-case”
algorithm that may output “all possible” colours in its output set. Specifically, this
means that we simply replace the subset relation in Remarks 1 and 2 with an equality.
Therefore, the graph S∗2 can be constructed using a fairly straightforward computer
program, with a mechanical application of the definitions. The end result is a dense
graph on 55 nodes; its complement is shown in Figure 3.

It is now easy to discover a colouring of graph S∗2 that uses 16 colours with the
help of e.g. modern SAT solvers. This implies that any subgraph S2(A) can also be
coloured with 16 colours and Lemma 13 follows.

5 Main Theorems

We now have all the pieces for proving Theorem 1:

Theorem 1. For infinitely many values of n, it takes exactly 1
2 log∗ n rounds to compute

a 3-colouring of a directed path.

Proof. Let n = 2k+12 + 1 for any k ≥ 2. Be Lemma 2 we have the identity

C(n, 3) = dT (n, 3)/2e (1)

and from Theorems 4 and 5 we get that

2k + 1 ≤ T (n, 3) ≤ 2k + 2,

which together with (1) yields C(n, 3) = k + 1. Since log∗ n = 2k + 2 it follows that
C(n, 3) = k + 1 = log∗ n/2.

For the remaining values of n we get almost-tight bounds. There remains a slack of
one communication round in the upper and lower bounds for C(n, 3).

Theorem 17. For any n ≥ 4,⌈
1

2
(log∗ n− 1)

⌉
≤ C(n, 3) ≤

⌈
1

2
(log∗ n+ 1)

⌉
.

Proof. For n = 4, we have shown that T (4, 3) = 2 so the bounds follow. Fix n > 4.
Now there exists some h > 1 such that n ∈ {h2 + 1, . . . , h+12} and h = log∗ n − 1.
Theorems 4 and 5 give us the bounds

log∗ n− 1 = h ≤ T (n, 3) ≤ h+ 2 = log∗ n+ 1

and since C(n, 3) = dT (n, 3)/2e, the claimed bounds follow.

6 Conclusions and Discussion

In this work we gave exact and near-exact bounds on the complexity of distributed
graph colouring. The key result is that the complexity of colour reduction from n to 3
on directed paths and cycles is exactly 1

2 log∗ n rounds for infinitely many values of n,
and very close to it for all values of n.

13

In essence, we have shown that the colour reduction algorithm by Naor and Stock-
meyer is near-optimal, while the algorithm by Cole and Vishkin is suboptimal. We
have also seen that Linial’s lower bound had still some room for improvements.

One of the novel techniques of this work was the use of computers in lower-bound
proofs. Two key elements are results of a computer search:

• Lemma 9: The proof of T (16, 3) ≥ 3 is based on the analysis of the chromatic
number of the neighbourhood graph N7,1.

• Lemma 10: The proof of T (n, 16) ≤ T (n, 3)− 2 is based on the analysis of the
chromatic number of the successor graph S2.

In both cases we used computers to analyse the chromatic numbers of various successor
graphs and neighbourhood graphs, in order to find the right parameters for our needs.

The idea of analysing neighbourhood graphs and their chromatic numbers is
commonly used in the context of human-designed lower-bound proofs [7, 10, 13, 14]. It
is also fairly straightforward to construct neighbourhood graphs so that we can use
computers and graph-colouring algorithms to discover new upper bounds [18], and the
same technique can be used to prove lower bounds on T (n, c) for small, fixed values of
n and c; in our case we used it to bound T (16, 3). However, this does not yield bounds
on, e.g., T (n, 3) for large values of n.

The key novelty of our work is that we can use the chromatic number of successor
graphs to give improved bounds on T (n, 3) for all values of n. To do that, it is sufficient
to find a successor graph Sk with a small chromatic number, apply Lemma 12. The
same technique can be also used to study T (n, c) for any fixed c ≥ 3.

Acknowledgements

We thank Juho Hirvonen for helpful comments. Parts of this work are based on the first
author’s MSc thesis [18]. Computer resources were provided by the Aalto University
School of Science “Science-IT” project, and by the Department of Computer Science at
the University of Helsinki.

References

[1] Matti Åstrand and Jukka Suomela. Fast distributed approximation algorithms for
vertex cover and set cover in anonymous networks. In Proc. 22nd Annual ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA 2010), pages
294–302. ACM Press, 2010. doi:10.1145/1810479.1810533.

[2] Leonid Barenboim and Michael Elkin. Distributed Graph Coloring: Funda-
mentals and Recent Developments. Morgan & Claypool, 2013. doi:10.2200/

S00520ED1V01Y201307DCT011.

[3] Richard Cole and Uzi Vishkin. Deterministic coin tossing with applications
to optimal parallel list ranking. Information and Control, 70(1):32–53, 1986.
doi:10.1016/S0019-9958(86)80023-7.

[4] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to
Algorithms. The MIT Press, Cambridge, MA, 1990.

14

http://dx.doi.org/10.1145/1810479.1810533
http://dx.doi.org/10.2200/S00520ED1V01Y201307DCT011
http://dx.doi.org/10.2200/S00520ED1V01Y201307DCT011
http://dx.doi.org/10.1016/S0019-9958(86)80023-7

[5] Andrzej Czygrinow, Micha l Hańćkowiak, and Wojciech Wawrzyniak. Fast distrib-
uted approximations in planar graphs. In Proc. 22nd International Symposium on
Distributed Computing (DISC 2008), volume 5218 of Lecture Notes in Computer
Science, pages 78–92. Springer, 2008. doi:10.1007/978-3-540-87779-0_6.

[6] Faith E. Fich and Vijaya Ramachandran. Lower bounds for parallel computation
on linked structures. In Proc. 2nd Annual ACM Symposium on Parallel Algorithms
and Architectures (SPAA 1990), pages 109–116. ACM Press, 1990. doi:10.1145/
97444.97676.

[7] Pierre Fraigniaud, Cyril Gavoille, David Ilcinkas, and Andrzej Pelc. Distributed
computing with advice: information sensitivity of graph coloring. In Proc. 34th
International Colloquium on Automata, Languages and Programming (ICALP
2007), volume 4596 of Lecture Notes in Computer Science, pages 231–242. Springer,
2007. doi:10.1007/978-3-540-73420-8_22.

[8] Juan A. Garay, Shay Kutten, and David Peleg. A sublinear time distributed
algorithm for minimum-weight spanning trees. SIAM Journal on Computing,
27(1):302–316, 1998. doi:10.1137/S0097539794261118.

[9] Andrew V. Goldberg, Serge A. Plotkin, and Gregory E. Shannon. Parallel
symmetry-breaking in sparse graphs. SIAM Journal on Discrete Mathematics,
1(4):434–446, 1988. doi:10.1137/0401044.

[10] Fabian Kuhn and Roger Wattenhofer. On the complexity of distributed graph
coloring. In Proc. 25th Annual ACM Symposium on Principles of Distributed
Computing (PODC 2006), pages 7–15. ACM Press, 2006. doi:10.1145/1146381.
1146387.

[11] Juhana Laurinharju and Jukka Suomela. Brief announcement: Linial’s lower bound
made easy. In Proc. 33rd ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing (PODC 2014), pages 377–378. ACM Press, 2014. doi:

10.1145/2611462.2611505. arXiv:1402.2552.

[12] Christoph Lenzen and Boaz Patt-Shamir. Improved distributed Steiner forest
construction. In Proc. 33rd ACM SIGACT-SIGOPS Symposium on Principles
of Distributed Computing (PODC 2014), pages 262–271. ACM Press, 2014. doi:
10.1145/2611462.2611464. arXiv:1405.2011.

[13] Nathan Linial. Locality in distributed graph algorithms. SIAM Journal on
Computing, 21(1):193–201, 1992. doi:10.1137/0221015.

[14] Moni Naor. A lower bound on probabilistic algorithms for distributive ring
coloring. SIAM Journal on Discrete Mathematics, 4(3):409–412, 1991. doi:

10.1137/0404036.

[15] Moni Naor and Larry Stockmeyer. What can be computed locally? SIAM Journal
on Computing, 24(6):1259–1277, 1995. doi:10.1137/S0097539793254571.

[16] Alessandro Panconesi and Romeo Rizzi. Some simple distributed algorithms
for sparse networks. Distributed Computing, 14(2):97–100, 2001. doi:10.1007/

PL00008932.

15

http://dx.doi.org/10.1007/978-3-540-87779-0_6
http://dx.doi.org/10.1145/97444.97676
http://dx.doi.org/10.1145/97444.97676
http://dx.doi.org/10.1007/978-3-540-73420-8_22
http://dx.doi.org/10.1137/S0097539794261118
http://dx.doi.org/10.1137/0401044
http://dx.doi.org/10.1145/1146381.1146387
http://dx.doi.org/10.1145/1146381.1146387
http://dx.doi.org/10.1145/2611462.2611505
http://dx.doi.org/10.1145/2611462.2611505
http://arxiv.org/abs/1402.2552
http://dx.doi.org/10.1145/2611462.2611464
http://dx.doi.org/10.1145/2611462.2611464
http://arxiv.org/abs/1405.2011
http://dx.doi.org/10.1137/0221015
http://dx.doi.org/10.1137/0404036
http://dx.doi.org/10.1137/0404036
http://dx.doi.org/10.1137/S0097539793254571
http://dx.doi.org/10.1007/PL00008932
http://dx.doi.org/10.1007/PL00008932

[17] David Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM
Monographs on Discrete Mathematics and Applications. Society for Industrial and
Applied Mathematics, Philadelphia, 2000.

[18] Joel Rybicki. Exact bounds for distributed graph colouring. Master’s thesis,
Department of Computer Science, University of Helsinki, May 2011. http://urn.
fi/URN:NBN:fi-fe201106091715.

[19] Jukka Suomela. Distributed Algorithms. 2014. Online textbook. http://users.
ics.aalto.fi/suomela/da/.

[20] Roger Wattenhofer. Lecture notes on principles of distributed computing, 2013.
http://dcg.ethz.ch/lectures/podc_allstars/.

16

http://urn.fi/URN:NBN:fi-fe201106091715
http://urn.fi/URN:NBN:fi-fe201106091715
http://users.ics.aalto.fi/suomela/da/
http://users.ics.aalto.fi/suomela/da/
http://dcg.ethz.ch/lectures/podc_allstars/

	1 Introduction
	1.1 Problem Setting
	1.2 Prior Work
	1.3 Contributions
	1.4 Applications

	2 Preliminaries
	3 The Upper Bound
	4 The Lower Bound
	4.1 The Speed-up Lemma
	4.2 Proof of Theorem 5
	4.3 Proof of Lemma 10 via Successor Graphs
	4.4 A Human-Readable Proof of Lemma 13
	4.5 Computational Proof of Lemma 13

	5 Main Theorems
	6 Conclusions and Discussion

