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Abstract

The virtualization and softwarization of modern computer networks enables the definition and fast
deployment of novel network services called service chains: sequences of virtualized network functions
(e.g., firewalls, caches, traffic optimizers) through which traffic is routed between source and destination.
This paper attends to the problem of admitting and embedding a maximum number of service chains,
i.e., a maximum number of source-destination pairs which are routed via a sequence of ` to-be-allocated,
capacitated network functions. We consider an Online variant of this maximum Service Chain Embedding
Problem, short OSCEP, where requests arrive over time, in a worst-case manner. Our main contribution
is a deterministic O(log `)-competitive online algorithm, under the assumption that capacities are at
least logarithmic in `. We show that this is asymptotically optimal within the class of deterministic and
randomized online algorithms. We also explore lower bounds for offline approximation algorithms, and
prove that the offline problem is APX-hard for unit capacities and small ` ≥ 3, and even Poly-APX-hard
in general, when there is no bound on `. These approximation lower bounds may be of independent
interest, as they also extend to other problems such as Virtual Circuit Routing. Finally, we present an
exact algorithm based on 0-1 programming, implying that the general offline SCEP is in NP and by the
above hardness results it is NP-complete for constant `.

1 Introduction

Today’s computer networks provide a rich set of in-network functions, including access control, firewall, in-
trusion detection, network address translation, traffic shaping and optimization, caching, among many more.
While such functionality is traditionally implemented in hardware middleboxes, computer networks become
more and more virtualized [1, 22]: Network Function Virtualization (NFV) enables a flexible instantiation
of network functions on network nodes, e.g., running in a virtual machine on a commodity x86 server.

Modern computer networks also offer new flexibilities in terms of how traffic can be routed through such
network functions. In particular, using Software-Defined Networking (SDN) [16] technology, traffic can be
steered along arbitrary routes, i.e., along routes which depend on the application [11], and which are not
necessarily shortest paths or destination-based, or not even loop-free [21].

These trends enable the realization of interesting new in-network communication services called service
chains [8, 18, 23]: sequences of network functions which are allocated and stitched together in a flexible
manner. For example, a service chain ci could define that the traffic originating at source si is first steered
through an intrusion detection system for security (1st network function), next through a traffic optimizer
(2nd network function), and only then is routed towards the destination ti. Such advanced network ser-
vices open an interesting new market for Internet Service Providers, which can become “miniature cloud
providers” [24] specialized for in-network processing.
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1.1 Paper Scope

In this paper, we study the problem of how to optimally admit and embed service chain requests. Given
a redundant distribution of network functions and a sequence σ = (σ1, σ2, . . . , σk), where each σi = (si, ti)
for i ∈ [1, k] defines a source-destination pair (si, ti) which needs to be routed via a sequence of network
function instances, we ask: Which requests σi to admit and where to allocate their service chains ci? The
service chain embedding should respect capacity constraints as well as constraints on the length (or stretch)
of the route from si to ti via its service chain ci.

Our objective is to maximize the number of admitted requests. We are particularly interested in the
Online Service Chain Embedding Problem (OSCEP), where σ is only revealed over time. We assume that a
request cannot be delayed and once admitted, cannot be preempted again. Sometimes, we are also interested
in the general (offline) problem, henceforth denoted by SCEP.

1.2 Our Contribution

We formulate the online and offline problems OSCEP and SCEP, and make the following contributions:

1. We present a deterministic online algorithm ACE1 which, given that node capacities are at least
logarithmic, achieves a competitive ratio O(log `) for OSCEP. This result is practically interesting, as
the number of to be traversed network functions ` is likely to be small in practice. To the best of our
knowledge, so far, only heuristic and offline approaches to solve the service chain embedding problem
have been considered [5, 17, 23].

2. We establish a connection to virtual circuit routing and prove that ACE is asymptotically optimal in
the class of both deterministic and randomized online algorithms. Moreover, we initiate the study of
lower bounds for the offline version of our problem, and show that no good approximation algorithms
exist, unless P = NP : for unit capacities and already small `, the offline problem SCEP is APX-hard.
For arbitrary `, the problem can even become Poly-APX-hard. These results also apply to the offline
version of classic online call control problems, which to the best of our knowledge have not been studied
before.

3. We present a 0-1 program for SCEP, which also shows that SCEP is in NP for constant ` and, taking into
account our hardness result, that SCEP is NP-complete for constant `. More precisely, if the number
of all possible chains that can be constructed over the network function instances is polynomial in
the network size n then the number of variables in the 0-1 program is also polynomial, and thus the
problem is in NP. If mi is the number of instances of network function fi in the network, i = 1, ..., `,
and m = maxi{mi}, then the size of the 0-1 program is polynomial for m` = poly(n). This always
holds for constant `. When m is constant, then it holds for ` = O(log n).

1.3 Outline

This paper is organized as follows. Section 2 introduces our model and puts the model into perspective
with respect to classic online optimization problems. We present the 0-1 program in Section 3: the section
also serves as a formal model for our problem. Section 4 presents and analyzes the O(log `)-approximation
algorithm, and Section 5 presents our lower bound. We summarize our results and conclude our work in
Section 6.

2 Model

We are given an undirected network G = (V,E) with n = |V | nodes and m = |E| edges. On this graph, we
need to route a sequence of requests σ = (σ1, σ2, . . . , σk): σi for any i represents a node pair σi = (si, ti) ∈

1Admission control and Chain Embedding.
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V × V . Each pair σi needs to be routed (from si to ti) via a sequence of ` network functions (F1, . . . , F`).

For each network function type Fi, there exist multiple instantiations f
(1)
i , f

(2)
i , . . . in the network. (We will

omit the superscript if it is irrelevant or clear in the context.) Each of these instances can be applied to σi
along the route from si to ti. However, in order to minimize the detour via these functions and in order to

keep the route from si to ti short, a “nearby instance” f
(j)
i should be chosen, for each i. A service chain

instance for (si, ti) is denoted by ci = (f
(x1)
1 , f

(x2)
2 , . . . , f

(x`)
` ), for some function instances f

(xy)
j , j ∈ [1, `].

For ease of presentation, we will initially assume that requests σi are of infinite duration. We will later
show how to generalize our results to scenarios where requests can have arbitrary and unknown durations.

f2 

f2 

f1 

s1 

t1 

s2 

t2 

Figure 1: Illustration of the model: The communication from s1 to t1 and from s2 to t2 needs to be routed
via a service chain (F1, F2). In this example, function F1 is instantiated once, and function F2 is instantiated
twice. Resources for (s1, t1) are allocated only at the second instance of F2 (the upper one).

Concretely, in order to satisfy a request σi = (si, ti), a route of the following form must be computed:

1. The route must start at si, traverse a sequence of network functions (f
(x1)
1 , f

(x2)
2 , . . . , f

(x`)
` ), and end

at ti. Here, f
(xy)
j , j ∈ [1, `] is an instance of the network function of type Fj .

2. The route must not violate capacity constraints on any node v ∈ V . Nodes v ∈ V are capacitated and
resources need to be allocated for each network function which is used for any (si, ti) pair. Multiple
network functions may be available on the same physical machine, and only consume resources once
they are used in certain service chains. The capacity κ(v) of each node v ∈ V hence defines the
maximum number of requests σi for which v can apply its network functions. However, node v can
always simply serve as a regular forwarding node for other requests, without applying the function.

3. The route should be of (hop) length at most r (or have a bounded stretch, see Section 4.2).

Otherwise, a request σi must be rejected. For ease of notation, in the following, we will sometimes assume
that for a rejected request σi, ci = ∅. Also note that the resulting route may not form a simple path, but
more generally describes a walk : it may contain forwarding loops (e.g., visit a network function and come
back).

Our objective is to maximize the number of satisfied requests σi, resp. to embed a maximum number of
service chains. We are mainly interested in the online variant of the problem, where σ is revealed over time.
More precisely, and as usual in the realm of online algorithms and competitive analysis, we seek to devise
an online algorithm which minimizes the so-called competitive ratio: Let ON(σ) denote the cost of a given
online algorithm for σ and let OFF(σ) denote the cost of an optimal offline algorithm. The competitive
ratio ρ is defined as the worst ratio (over all possible σ) of the cost of ON compared to OFF. Formally,
ρ = maxσON(σ)/OFF(σ).

Note that solving this optimization problem consists of two subtasks:
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1. Admission control: Which requests σi to admit, and which to reject?

2. Assignment and routing: We need to assign σi = (si, ti) pairs to a sequence of network functions and
route the flow through them accordingly.

See Figure 2 for an illustration of our model.

2.1 Putting the Model into Perspective

From an algorithmic perspective, the models closest to ours occur in the context of online call admission
respectively virtual circuit routing. There, the fundamental problem is to decide, in an online manner, which
“calls” resp. “virtual circuits” or entire networks, to admit and how to route them, in a link-capacitated
graph. [3, 4, 9, 10, 20]

Instead of routes, in our model, service functions have to be allocated and connected to form service
chains. In particular, in our model, nodes have a limited capacity and can only serve as network functions
for a bounded number of source-destination pairs. The actual routes taken in the network play a secondary
role, and may even contain loops. In particular, our model supports the specification of explicit constraints
on the length of a route, but also on the stretch: the factor by which the length of a route from a source to
a destination can be increased due to the need to visit certain network functions.

Nevertheless, as this paper shows, several techniques from classic literature on online call control can
be applied to our model. At the same time, to the best of our knowledge, some of our results also provide
new insights into the classic variants of call admission control. For example, our lower bounds on the
approximation ratio also translate to classic problems, which so far have mainly been studied from an online
perspective.

3 Optimal 0-1 Program and NP-Completeness

SCEP can be formulated as a 0-1 integer linear program. This together with our hardness results also proves
NP-completeness for constant `: 0-1 integer linear programming is one of Karp’s NP-complete problems [14].

Let σ = {σi = (si, ti) : si, ti ∈ V } be the set of requests, and let C be the set of possible chains over k
nodes, respecting route length constraints. We refer by c ∈ C to a potential chain. For all potential chains
c ∈ C, let Sc be the set of connection requests in σ that can be routed through c on a path of length at most
r, i.e., for c = (v1, ..., v`), let Sc = {σi = (si, ti) ∈ σ : d(si, v1) +

∑k
i=2 d(vi−1, vi) + d(vk, ti) ≤ r}, where

d(u, v) denotes the length of the shortest path between nodes u, v ∈ V in the network G. The shortest paths
between nodes can be computed in a preprocessing step.

For all connection requests σi ∈ σ, we introduce the binary variable xi ∈ {0, 1}. The variable xi = 1
indicates that the request i is admitted in the solution. For all potential network function chains c ∈ C, we
introduce the binary variable xc ∈ {0, 1}. The variable xc = 1 indicates that C is selected in the solution.
For all c ∈ C and σi ∈ σ, we introduce the binary variable xc,i ∈ {0, 1}. The variable xc,i indicates that
the request σi = (si, ti) ∈ σ is routed through the nodes of c, such that the length of the walk from si to ti
through c has length at most r.

4



maximize
∑
σi∈σ

xi (1)

s.t. xi −
∑
c∈C

xc,i = 0 ∀ σi ∈ σ (2)∑
c∈C:σi 6∈Sc

xc,i = 0 ∀ σi ∈ σ (3)

xc ≤ xv ∀ v ∈ V,∀ c ∈ C : v ∈ c (4)∑
c∈C:v∈c

xc ≥ xv ∀ v ∈ V (5)∑
σi∈σ

∑
c∈C:v∈c

xc,i ≤ κ(v) · xv ∀ v ∈ V (6)

xi, xv, xc, xc,i ∈ {0, 1} ∀ v ∈ V,∀ c ∈ C,∀ σi ∈ σ (7)

The objective function (1) asks for admitting a request set of maximum cardinality. The Constraints (2)
enforce that each admitted request σi ∈ σ is assigned to exactly one chain c ∈ C, and rejected requests are
not assigned to any chain, i.e., for each σi with xi = 1, there is exactly one chain c with xc,i = 1, and for
each i with xi = 0, we have xc,i = 0 for all c. Constraints (3) state that each σi ∈ σ can only be assigned to
a chain c ∈ C with σi ∈ Sc. By definition of Sc, the nodes si and ti can be routed through c by a path of
length at most r. Constraints (4) ensure that if a node v ∈ V is contained in a selected chain c (i.e., xc = 1),
then xv = 1. Constraints (5) enforce that if a node v ∈ V is not contained in any selected chain, i.e., xc = 0
for all chains c with v ∈ c, then xv = 0. Therefore, Constraints (4) and (5) together imply that xv = 1 iff
v is contained in a selected chain c. Constraints (6) describe that the number of requests routed through
a node v of a selected chain is limited by the capacity κ(v) of v. Furthermore, (6) ensures that if v is not
contained in any selected chain (i.e., xv = 0) then no request q is assigned to any chain c with v ∈ c.

The solution of this 0-1 program defines a maximum cardinality set of admitted requests σadmit = {σi :
xi = 1}, and an assignment of each request σi ∈ σadmit to a chain c ∈ C. Each request σi ∈ σadmit is
assigned to a chain C ∈ C iff xc,i = 1. This assignment guarantees that (i) the request σi = (si, ti) can be
routed through c on a path of length at most r, (ii) the number of pairs routed through any node v ∈ V of a
selected chain is limited by the capacity κ(v) of v, and (iii) none of the requests σi ∈ σadmit are assigned to
a non selected chain. Furthermore, it is guaranteed that rejected requests σi ∈ σ \ σadmit are not assigned
to any chain.

4 Competitive Online Algorithm

We present an online algorithm ACE for OSCEP. ACE admits and embeds at least a Ω(log `)-fraction of
the number of requests embedded by an optimal offline algorithm OFF.

Let us first introduce some notation. Let Aj be the set of indices of the requests admitted by ACE just
before considering the jth request σj . The index set of all admitted requests after processing all k requests
in σ, will be denoted by Ak+1 resp. A.

The relative load λv(j) at node v before processing the jth request, is defined by the number of service
chains ci in which v participates, divided by v’s capacity:

λv(j) =
|{ci : i ∈ Aj , v ∈ ci}|

κ(v)
.

We seek to ensure the invariant that capacity constraints are enforced at each node, i.e., ∀ v ∈ V, j ≤ k+ 1 :
λv(j) ≤ 1.

We define µ = 2`+ 2, and in the following, will assume that

min
v
{κ(v)} ≥ logµ (8)
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4.1 Algorithm

The key idea of ACE is to assign to each node, a cost which is exponential in the relative node load. More
precisely, with each node we associate a cost wv(j) just before processing the jth request σj :

wv(j) = κ(v)(µλv(j) − 1).

Our online algorithm ACE simply proceeds as follows:

• When request σj arrives, ACE checks if there exists a chain cj , σj ∈ Scj , satisfying the following
condition: ∑

v∈cj

wv(j)

κ(v)
≤ ` (9)

• If such a chain cj exists, then admit σj and assign it to cj . Otherwise, reject σj .

In order to ensure that chains selected for Condition 9 also fulfill the constraint on the maximal route
length, ACE simply uses preprocessing. We maintain at each node its relative load. When a new request
arrives ACE has to test the costs of at most O(n`) chains, and the cost can be computed in O(`) time per
chain. The overall runtime of ACE per step is hence bounded by O(` ·n`), which is polynomial for constant
`.

4.2 Analysis

The analysis of the competitive ratio achieved by ACE exploits a connection to Virtual Circuit Routing [20]
and unfolds in three lemmata. First, in Lemma 4.1 we prove that the set A of requests admitted by ACE
are feasible and respect capacity constraints. Second, in Lemma 4.2, we show that at any moment in time,
the sum of node costs is within a factor O(` · logµ) of the number of requests already admitted by ACE.
Third, in Lemma 4.3, we prove that the number of requests admitted by the optimal offline algorithm OFF
but rejected by the online algorithm, is bounded by the sum of node costs after processing all requests.

Let W be the sum of the node costs after ACE processed all k request, let AOFF be the indices of
the requests admitted by OFF, and let A∗ = AOFF \ A. Then, from Lemma 4.2 we will obtain a bound
|A| ≥W/(2` · logµ), and from Lemma 4.3 that |A∗| ≤W/`.

Thus, even by conservatively ignoring all the requests which ACE might have admitted which OFF did
not, we obtain that the competitive ratio of ACE is at most O(log `).

Let us now have a closer look at the first helper lemma.

Lemma 4.1 For all nodes v ∈ V : ∑
j∈A:v∈cj

1 ≤ κ(v).

Proof: Let σj be the first request admitted by ACE, such that the relative load λv(j + 1) at some node
v ∈ cj exceeds 1. By definition of the relative load we have λv(j) > 1− 1/κ(v).

By the assumption that log µ ≤ κ(v), we get

wv(j)

κ(v)
= µλv(j) − 1 > µ1−1/ log µ − 1 = µ/2− 1 = `.

Therefore, by Condition (9), the request σj could not be assigned to cj . We established a contradiction. �
Next we show that the sum of node costs is within an O(` · logµ) factor of the number of already admitted

requests.

Lemma 4.2 Let A be the set of indices of requests admitted by the online algorithm. Let k be the index of
the last request. Then

(2` logµ)|A| ≥
∑
v

wv(k + 1).
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Proof: We show the claim by induction on k. For k = 0, both sides of the inequality are zero, thus the
claim is trivially true. Rejected requests do not change either side of the inequality. Thus, it is enough to
show that, for each j ≤ k, if we admit σj , we get:∑

v

(wv(j + 1)− wv(j)) ≤ 2` logµ.

Consider a node v ∈ cj . Then by definition of the costs:

wv(j + 1)− wv(j) = κ(v)(µλv(j)+1/κ(v) − µλv(j))

= κ(v)(µλv(j)(µ1/κ(v) − 1))

= κ(v)(µλv(j)(2(log µ)·1/κ(v) − 1))

By Assumption (8), 1 ≤ κ(v)/ logµ. Since 2x − 1 ≤ x, for 0 ≤ x ≤ 1, it follows:

wv(j + 1)− wv(j) ≤ µλv(j) logµ

= logµ(wv(j)/κ(v) + 1).

Summing up over all the nodes and using the fact that the request σj was admitted and chain cj was assigned,
and that the number of nodes |cj | in cj is `, we get:∑

v

(wv(j + 1)− wv(j)) ≤ logµ(`+ |cj |) = 2` logµ.

This proves the claim. �
We finally prove that ` times the number of requests rejected by ACE but admitted by the optimal

offline algorithm OFF is bounded by the sum of node costs after processing all requests.

Lemma 4.3 Let AOFF be the set of indices of the requests that were admitted by the optimal offline algo-
rithm, and let A∗ = AOFF \ A be the set of indices of requests admitted by AOFF but rejected by the online
algorithm. Then:

|A∗| · ` ≤
∑
v

wv(k + 1).

Proof: For j ∈ A∗, let c∗j be the chain assigned to request σj by the optimal offline algorithm. By the fact
that σj was rejected by the online algorithm, we have:

` <
∑
v∈c∗j

wv(j)

κ(v)
.

Since the costs wv(j) are monotonically increasing in j, we have

` <
∑
v∈c∗j

wv(j)

κ(v)
≤

∑
v∈c∗j

wv(k + 1)

κ(v)
.

Summing over all j ∈ A∗, we get

|A∗|` ≤
∑
j∈A∗

∑
v∈c∗j

wv(k + 1)

κ(v)

≤
∑
v

wv(k + 1) ·
∑

j∈A∗:v∈c∗j

1

κ(v)

≤
∑
v

wv(k + 1).

The last inequality follows from the fact that capacity constraints need to be met at any time. �
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Theorem 4.4 ACE is O(log `)-competitive.

Proof: By Lemma 4.1, capacity constraints are never violated. It remains to show that the number of
requests admitted by the online algorithm is at least 1/(2 log 2µ) times the number of requests admitted by
the optimal offline algorithm. The number of requests admitted by the optimal offline algorithm |AOFF| can
be bounded by the number of requests admitted by the online algorithm |A| plus the number of requests in
A∗ = AOFF \A. Therefore,

|AOFF| ≤ |A|+ |A∗|.
By Lemma 4.3 this is bounded by

|AOFF| ≤ |A|+
1

`

∑
v

wv(k + 1).

By Lemma 4.2 this is bounded by

|AOFF| ≤ |A|+ 2 · (logµ) · |A|
= (1 + 2 logµ)|A|

Therefore, the number of requests admitted by the optimal offline algorithm is at most (1 + 2 log µ) times
the number of requests admitted by ACE. �

Remarks. We conclude with some remarks. First, we note that our approach leaves us with many
flexibilities in terms of constraining the routes through the network functions. For instance, we can support
maximal path length requirements: the maximal length of the route from s to t via the network functions.
A natural alternative model is to define a limit on the stretch: the factor by which the “detour” via the
network functions can be longer than the shortest path from s to t. Moreover, so far, we focused on a model
where requests, once admitted, stay forever. Our approach can also be used to support service chain requests
of bounded or even unknown duration. In particular, by redefining µ to take into account the duration of
a request, we can for example apply the technique from [20] to obtain competitive ratios for more general
models.

5 Optimality and Approximation

It turns out that ACE is asymptotically optimal within the class of online algorithms (Theorem 5.1). This
section also initiates the study of lower bounds for (offline) approximation algorithms, and shows that for
low capacities, the problem is APX-hard even for short chains (Theorem 5.2), and even Poly-APX-hard in
general, that is, it is as hard as any problem that can be approximated to a polynomial factor in polynomial
time (Theorem 5.3).

Theorem 5.1 Any deterministic or randomized online algorithm for OSCEP must have a competitive ratio
of at least Ω(log `).

Proof: We can adapt the proof of Lemma 4.1 in [3] for our model. We consider a capacity of κ ≥ log `,
and we divide the requests in σ into log ` + 1 phases. We assume that n ≥ 2`2, and only focus on a subset
L of ` = |L| nodes which are connected as a chain (v1, . . . , v`) and at which the different service chains will
overlap. In phase 0, a group of κ service chains are requested, all of which need to be embedded across
the nodes L = {v1, . . . , v`}. In phases i ≥ 1, 2i groups of κ identical requests will need to share subsets
of L of size `/2i, that is, the jth group, 0 ≤ j < 2i, consists of κ requests to be embedded across nodes
[vj`/2i+1, v(j+1)`/2i ]. See Figure 2 for an illustration.

Let xi denote the number of requests an online algorithm ON admits in phase i. Each request accepted
in phase i will occupy `/2i units of capacities of nodes in L. Overall, the nodes in L have a capacity of ` · κ,
so it must hold that

log∑̀
i=0

`

2i
· xi ≤ ` · κ.

8
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Phase l κ
 

κ
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Figure 2: Illustration of lower bound construction: The adversary issues service chain requests in 1 + log `
phases, where each phase i consists of 2i groups of κ ≥ log ` requests. In phase 0 the adversary issues requests
that can be assigned to L = (v1, ..., v`). As intersections of chains in phase i with L are becoming shorter
over time, the online algorithm needs to decide whether to admit service service chain requests in phases,
where each phase consists of groups with κ chains. As chains are becoming shorter over time, the online
algorithm faces the problem whether to admit service chains early (and hence block precious resources), or
late (in which case the adversary stops issuing new requests).

Now, for 0 ≤ j ≤ log `, define Sj = `
2j ·

∑j
i=0 xi. Sj is a lower bound on the occupied capacity on the

nodes of L after phase j. Then:

log∑̀
j=0

Sj =

log∑̀
j=0

`

2j

j∑
i=0

xi

=

log∑̀
i=0

xi

log∑̀
j=i

`

2j

≤
log∑̀
i=0

xi2
`

2i

= 2`κ.

Hence there must exist a j such that Sj ≤ 2`κ/ log `. Then after phase j, the number of requests admitted
by the online algorithm ON is

j∑
i=0

xi =
2j

`
Sj ≤

2j

`
2`κ/ log ` = 2 · 2jκ/ log `.

The optimal offline algorithm OFF can reject all requests except for those of phase j. The number of
requests in phase j, and thus, the number of requests admitted by OFF is 2jκ. �

In the following, we also show that for networks with low capacities, it is not even possible to approximate
the offline version of the Service Chain Embedding Problem, SCEP in polynomial time. These lower bounds
on the approximation ratio naturally also constitute lower bounds on the competitive ratio which can be
achieved for OSCEP by any online algorithm.

In particular, we first show that already for short chains in scenarios with unit capacities, SCEP cannot
be approximated well.

Theorem 5.2 In scenarios where service chains have length ` ≥ 3 and where capacities are κ(v) = 1, for
all v, the offline problem is APX-hard.
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Proof: The proof follows from an approximation-preserving reduction from Maximum k-Set Packing
Problem (KSP). The Maximum Set Packing (SP) is one of Karp’s 21 NP-complete problems, where for a
given collection C of finite sets a collection of disjoint sets C ′ ⊆ C of maximum cardinality has to be found.
The KSP is the variation of the SP in which the cardinality of all sets in C are bounded from above by any
constant k ≥ 3, is APX-complete [12]. We refer to such sets as k-sets.

KSP can be reduced to our problem as follows. Let U be the universe and C be a collection of k-sets
of U in the KSP. W.l.o.g., we assume that each k-set contains exactly k elements, otherwise we can add
disjoint auxiliary elements to the sets in order to obtain exactly k elements in each set in C. For each u ∈ U
in the KSP instance we construct a node vu in the SCEP instance. Furthermore, for each k-set S in C, we
construct a service chain cS , such that cS contains exactly the nodes {vu : u ∈ S}. Let C be the set of
obtained service chains. For the set of requests σ we require that |σ| ≥ |C| and that each request can be
assigned to each service chain. Due to the unit capacity assumption, the set of admitted request must be
assigned to mutually disjoint service chains. Thus, the maximum number of admitted requests is at most
the maximum number of disjoint service chains. Since each request can be assigned to each service chain and
|σ| ≥ |C|, an optimal solution for the SCEP determines a maximum set of mutually disjoint service chains.
This maximum set of disjoint service chains determines a maximum number of disjoint k-sets, and thus, an
optimal solution for the KSP. �

It turns out that in general, with unit capacities, SCEP cannot even be approximated within polyloga-
rithmic factors.

Theorem 5.3 In general scenarios where capacities are κ(v) = 1, for all nodes v, and the chain length
` ≥ 3, the SCEP is. APX-hard and not approximable within `ε for some ε > 0. Without a bound on the
chain length the SCEP with κ(v) = 1, for all nodes v, is Poly-APX-hard.

Proof: We reduce the Maximum Independent Set (MIS) problem with maximum degree ` to the SCEP
with capacity κ(v) = 1, for all v ∈ V and chain length `. For graphs with bounded degree ` ≥ 3, the
MIS is APX-complete [19] and cannot be approximated within `ε for some ε > 0 [2]. By our reduction we
obtain the APX-hardness and non-approximability within `ε for some ε > 0 for the SCEP. In general, for
graphs without degree bound, the MIS is Poly-APX-complete [6], i.e. it is as hard as any problem that can
be approximated to a polynomial factor. By our reduction we obtain that the SCEP without chain length
bound is Poly-APX-hard.

For an instance G = (V,E) of the MIS problem with maximum degree `, we construct an instance of the
SCEP with capacity κ = 1 and chain length ` as follows. For each node v ∈ G, let cv be the chain whose
nodes correspond to the edges in G incident to v. If degG(v) < ` then we complete the chain with `−degG(v)
unique auxiliary nodes, in order to have ` nodes in the chain. The chain set is C = {cv : v ∈ G}. For the
set of requests σ, we require that |σ| ≥ |C| and each request σi ∈ σ can be assigned to each c ∈ C. Assigning
a σi to a chain c ∈ C fills the capacity of all nodes in c and the capacity of all chains c′ ∈ C that contain a
common node with c. Therefore, no further request σj , j 6= i, can be assigned to those chains. The chains
having a common node with cv correspond exactly the neighbors of v in G. Therefore, nodes u and v are
independent in the MIS instance iff chains cu and cv do not have a common node in the SCEP instance.
Since each request σi can be assigned to each c ∈ C and |σ| ≥ |C|, a maximum number of admitted requests
is determined by a maximum chain set C ′, such that for all cu, cv ∈ C ′, cu and cv do not contain a common
node. Therefore, C ′ determines a maximum independent set in G. Consequently, an α-approximation for
the SCEP would imply an α-approximation for the MIS problem. �

6 Summary and Conclusion

Over the last decades, a large number of middleboxes have been deployed in computer networks, to increase
security and application performance, as well as to offer new services in the form of static and dynamic
in-network processing (see the services by Akamai, Google Global Cache, Netflix Open Connect).

However, the increasing cost and inflexibility of hardware middleboxes (slow deployment, complex up-
grades, lack of scalability), motivated the advent of Network Function Virtualization (NFV) [7, 1, 13, 15],
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which aims to run the functionality provided by middleboxes as software on commodity hardware. The
transition to NFV is discussed within standardization groups such as ETSI, and we currently also witness
first deployments, e.g., TeraStream [25].

The possibility to chain individual network functions to form more complex services has recently attracted
much interest, both in academia [17, 23], as well as in industry [18].

Our paper made a first step towards a better understanding of the algorithmic problem underlying the
embedding of service chains. Our main contribution is a deterministic online algorithm ACE which achieves
a competitive ratio of O(log `) for OSCEP, given that node capacities are at least Ω(log `). This is interesting,
as the number ` of to-be-chained network functions is likely to be a small constant in practice. We also show
that ACE is asymptotically optimal, in the sense that no deterministic or randomized online algorithm can
achieve a competitive ratio o(log `). Moreover, we initiate the study of lower bounds for the offline version of
our problem, and show that no good approximation algorithms exist, unless P = NP : the offline problem is
APX-hard for unit capacities and service chains of length three. In general, the problem is even Poly-APX-
hard under unit capacities. These results also apply to the offline version of classic Virtual Circuit Routing.
Finally, this paper presented an exact algorithm based on 0-1 linear programming for solving the offline
SCEP optimally, which implies that the offline SCEP is in NP, if the size of the 0-1 program is polynomial,
which holds for constant ` – 0-1 programming is one of Karp’s 21 NP-complete problems [14].

We believe our paper opens several interesting directions for future research. For instance, it would be
interesting to find a lower bound for the approximation ratio for the offline problem version where ` = 2.
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