Abstract
This letter uses image overlay technique on memristor crossbar array (MCA) structure for image storing. Different programming circuits with time slot techniques are designed for the MCA consisting of the nonlinear HP memristor (HPMCA) and the MCA composed of the piece-wise linear threshold memristor (TMCA). The experiment results indicate that the HPMCA has a better performance, the TMCA is more practical in the industrial implementation. As a conclusion, the MCA made up of the memristor with both the nonlinear drift boundary property and the threshold property is preferred for image overlay.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chua, L.O.: Memristor: the missing circuit element. IEEE Transactionson Circuit Theory 18, 507–519 (1971)
Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memriastor found. Nature 452, 80–83 (2008)
Wen, S.P., Zeng, Z.G., Huang, T.W., Zhang, Y.D.: Exponential lag adaptive synchronization of memristive neural networks and applications in Pseudo-random generators. IEEE Transactions on Fuzzy Systems 22(6), 1704–1713 (2014)
Sun, J.W., Shen, Y.: Quasi-ideal memory system (2014)
Bao, H.B., Cao, J.D.: Projective synchronization of fractional-order memristor-based neural networks. Neural Networks 63, 1–9 (2015)
Dong, Z., Duan, S., Hu, X., Wang, L., Li, H.: A Novel Memristive Multilayer Feedforward Small-World Neural Network with Its Applications in PID Control. The Scientific World Journal (2014)
Prodromakis, T., Toumazou, C.: A review on memristive devices and applications. In: 2010 17th IEEE International Conference on Electronics, Circuits, and Systems, Athens, pp. 934–937 (2010)
Wen, S.P., Zeng, Z.G., Huang, T.W., Meng, Q.G.: Lag synchronization of switched neural networks via neural activation function and applications in image encryption. IEEE Transactions on Neural Networks and Learning Systems (2014). doi:10.1109/TNNLS.2014.2387355
Chen, L., Li, C.D., Huang, T.W., Chen, Y.R., Wang, X.: Memristor crossbar-based unsupervised image learning. Neural Computing and Applications 25(2), 393–400 (2014)
Wen, S.P., Huang, T.W., Zeng, Z.G., Chen, Y.R., Li, P.: Circuit design and exponential stabilization of memristive neural networks. Neural Networks 63, 48–56 (2015)
Pershin, Y.V., Ventra, M.D.: Experimental demonstration of associative memory with memristive neural networks. Neural Networks 23, 881–886 (2010)
Yang, J.J., Strukov, D.B., Stewart, D.R.: Memristive devices for computing. Nature Nanotechnology (2012). doi:10.1038/NNANO.2012.240
Kvatinsky, S., Friedman, E.G., Kolodny, A., Weiser, U.C.: TEAM: ThrEshold Adaptive Memristor Model. IEEE Transactions on Circuits and Systems-I 60, 211–221 (2012)
Biolek, Z., Biolek, D., Biolkova, V.: SPICE model of memristor with nonlinear dopant drift. Radio Engeering 18, 210–214 (2009)
Chen, L., Li, C., Huang, T., Chen, Y., Wen, S., Qi, J.: A synapse memristor model with forgetting effect. Physics Letters A 377(45), 3260–3265 (2013)
Kim, K.H., Gaba, S., Wheeler, D., Cruz-Albrecht, J.M., Hussain, T., Srinivasa, N., Lu, W.: A Functional Hybrid Memristor Crossbar-Array/CMOS System for Data Storage and Neuromorphic Applications. Nano Lett. 12, 389–395 (2011)
Bayat, F.M., Shouraki, S.B.: Programming of memristor crossbars by using genetic algorithm. Procedia Computer Science 3, 232–237 (2011)
Hu, X., Duan, S., Wang, L., Liao, X.: Memristive crossbar array with applications in image processing. Science China Information Sciences 55(2), 461–472 (2012)
Li, H.Q., Liao, X.F., Li, C.D., Huang, H.Y., Li, C.J.: Edge detection of noisy images based on cellular neural networks. Commun. Nonlinear Sci. Numer. Simul. 16(9), 3746–3759 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Chen, L., Li, C., Huang, T., Wen, S., Chen, Y. (2015). Memristor Crossbar Array for Image Storing. In: Hu, X., Xia, Y., Zhang, Y., Zhao, D. (eds) Advances in Neural Networks – ISNN 2015. ISNN 2015. Lecture Notes in Computer Science(), vol 9377. Springer, Cham. https://doi.org/10.1007/978-3-319-25393-0_19
Download citation
DOI: https://doi.org/10.1007/978-3-319-25393-0_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-25392-3
Online ISBN: 978-3-319-25393-0
eBook Packages: Computer ScienceComputer Science (R0)