Skip to main content

A Novel Speech Emotion Recognition Method via Transfer PCA and Sparse Coding

  • Conference paper
  • First Online:
Biometric Recognition (CCBR 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9428))

Included in the following conference series:

Abstract

In practice, the training data and testing data are often from different datasets, which have an adverse impact on speech emotion recognition rates. To tackle this problem, in this paper, a novel transfer principal component analysis (TPCA) and sparse coding based speech emotion recognition method is proposed. The TPCA approach is first presented for feature dimension reduction, then the sparse coding algorithm is introduced to learn the robust feature representations for both labeled source and unlabeled target corpora. To evaluate the performance of our proposed method, the experiments are conducted on two public datasets. Experimental results demonstrate that our proposed approach significantly outperforms the automatic recognition method, and obtains better performance than the state-of-the-art method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. El Ayadi, M., Kamel, M.S., Karray, F.: Survey on Speech Emotion Recognition: Features, Classification Schemes, and Databases. Pattern Recognition 44, 572–587 (2011)

    Article  MATH  Google Scholar 

  2. Kim, Y., Lee, H., Provost, E.M.: Deep learning for robust feature generation in audiovisual emotion recognition. In: IEEE International Conference on Acoustics. Speech and Signal Processing (ICASSP), pp. 3687–3691. IEEE Press, Vancovour (2013)

    Google Scholar 

  3. Schuller, B., Vlasenko, B., Eyben, F., Wollmer, M., Stuhlsatz, A., Wendemuth, A., Rigoll, G.: Cross-corpus Acoustic Emotion Recognition: Variances and Strategies. IEEE Transactions on Affective Computing 1, 119–131 (2010)

    Article  Google Scholar 

  4. Zhang, Z., Weninger, F., Wollmer, M.: Unsupervised learning in cross-corpus acoustic emotion recognition. In: IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU), pp. 523–528, IEEE Press, Hawaii (2011)

    Google Scholar 

  5. Deng, J., Zhang, Z., Eyben, F., Schuller, B.: Autoencoder-based Unsupervised Domain Adaptation for Speech Emotion Recognition. IEEE Signal Processing Letters 21, 1068–1072 (2014)

    Article  Google Scholar 

  6. Song, P., Jin, Y., Zhao, L., Xin, M.: Speech Emotion Recognition Using Transfer Learning. IEICE TRANSACTIONS on Information and Systems 97, 2530–2532 (2014)

    Article  Google Scholar 

  7. Bishop, C.M.: Pattern Recognition and Machine Learning. springer, New York (2006)

    Google Scholar 

  8. Gretton, A., Borgwardt, K.M., Rasch, M., Schlkopf, B., Smola, A.J.: A kernel method for the two-sample-problem. In: Advances in Neural Information Processing Systems, pp. 513–520. NIPS Foundation, Vancovour (2006)

    Google Scholar 

  9. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust Face Recognition Via Sparse Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 31, 210–227 (2009)

    Article  Google Scholar 

  10. Zheng, M., Bu, J., Chen, C., Wang, C., Zhang, L., Qiu, G., Cai, D.: Graph Regularized Sparse Coding for Image Representation. IEEE Transactions on Image Processing 20, 1327–1336 (2011)

    Article  MathSciNet  Google Scholar 

  11. Lee, H., Battle, A., Raina, R., Ng, A.Y.: Efficient sparse coding algorithms. In: Advances in Neural Information Processing Systems, pp. 801–808. NIPS Foundation, Vancovour (2006)

    Google Scholar 

  12. Burkhardt, F., Paeschke, A., Rolfes, M., Sendlmeier, W., Weiss, B.: A Database of german emotional speech. In: Interspeech, pp. 1517–1520. ISCA, Lisbon (2005)

    Google Scholar 

  13. Martin, O., Kotsia, I., Macq, B., Pitas, I.: The eNTERFACE 2005 audio-visual emotion database. In: International Conference on Data Engineering Workshops, pp. 8–8. IEEE Press, Atlanta (2006)

    Google Scholar 

  14. Eyben, F., Wöllmer, M., Schuller B.: Opensmile: the munich versatile and fast open-source audio feature extractor. In: ACM Multimedia, pp. 1459–1462. ACM Press, Firenze (2010)

    Google Scholar 

  15. Schuller, B., Steidl, S., Batliner, A., Burkhardt, F., Devillers, L., Muller, C.A., Narayanan S.S.: The interspeech 2010 paralinguistic challenge. In: Interspeech, pp. 2794–2797. ISCA, Makuhari (2010)

    Google Scholar 

  16. Pan, S.J., Tsang, I.W., Kwok, J.T., Yang, Q.: Domain Adaptation via Transfer Component Analysis. IEEE Transactions on Neural Networks 22, 199–210 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Song, P., Zheng, W., Liu, J., Li, J., Zhang, X. (2015). A Novel Speech Emotion Recognition Method via Transfer PCA and Sparse Coding. In: Yang, J., Yang, J., Sun, Z., Shan, S., Zheng, W., Feng, J. (eds) Biometric Recognition. CCBR 2015. Lecture Notes in Computer Science(), vol 9428. Springer, Cham. https://doi.org/10.1007/978-3-319-25417-3_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25417-3_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25416-6

  • Online ISBN: 978-3-319-25417-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics