Skip to main content

Automatic Facial Expression Analysis of Students in Teaching Environments

  • Conference paper
  • First Online:
Biometric Recognition (CCBR 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9428))

Included in the following conference series:

  • 2522 Accesses

Abstract

Based on students’ facial expressions, the teacher in class can know the students’ comprehension of the lecture, which has been a standard of teaching effect evaluation. In order to solve the problem of high cost and low efficiency caused by employing human analysts to observe classroom teaching effect, in this paper we present a novel and high-efficiency prototype system, that automatically analyzes students’ expressions. The fusion feature called Uniform Local Gabor Binary Pattern Histogram Sequence (ULGBPHS) is employed in the system. Using K-nearest neighbor (KNN) classifier, we obtain an average recognition rate of 79% on students’ expressions database with five types of expressions. The experiment shows that the proposed system is feasible, and is able to improve the efficiency of teaching evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wen, S.H., Xu, J.S., Carline, J.D., Zhong, F., Zhong, Y.J., Shen, S.J.: Effects of a teaching evaluation system: a case study. J. International Journal of Medical Education 2, 18–23 (2011)

    Article  Google Scholar 

  2. Sathik, M., Jonathan, S.G.: Effect of facial expressions on student’s comprehension recognition in virtual educational environments. SpringerPlus 2(1), 1–9 (2013)

    Article  Google Scholar 

  3. Zeng, Z., Pantic, M., Roisman, G., Huang, T.S.: A survey of affect recognition methods: Audio, visual, and spontaneous expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(1), 39–58 (2009)

    Article  Google Scholar 

  4. Moore, S., Bowden, R.: Local binary patterns for multi-view facial expression recognition. Computer Vision and Image Understanding 115(4), 541–558 (2011)

    Article  Google Scholar 

  5. Lu, H., Yang, M., Ben, X., Zhang, P.: Divided Local Binary Pattern (DLBP) Features Description Method For Facial Expression Recognition. J Journal of Information & Computational Science 11(07), 2425–2433 (2014)

    Article  Google Scholar 

  6. Lee, S.H., Plataniotis, K., Konstantinos, N., Ro, Y.M.: Intra-class variation reduction using training expression images for sparse representation based facial expression recognition. IEEE Transactions on Affective Computing 5(3), 340–351 (2014)

    Article  Google Scholar 

  7. Liu, P., Han, S., Meng, Z., Tong, Y.: Facial expression recognition via a boosted deep belief network. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1805–1812. IEEE (2014)

    Google Scholar 

  8. Bosch, N., D’Mello, S., Baker, R., Ocumpaugh, J., Shute, V., Ventura, M., Wang, L., Zhao, W.: Automatic detection of learning-centered affective states in the wild. In: Proceedings of the 20th International Conference on Intelligent User Interfaces, pp. 379–388. ACM (2015)

    Google Scholar 

  9. Whitehill, J., Serpell, Z., Lin, Y.C., Foster, A., Movellan, J.R.: The Faces of Engagement: Automatic Recognition of Student Engagement from Facial Expressions. IEEE Transactions on Affective Computing 5(1), 86–98 (2014)

    Article  Google Scholar 

  10. Uřičář, M., Franc, V., Hlaváč, V.: Detector of facial landmarks learned by the structured output SVM. VISAPP 12, 547–556 (2012)

    Google Scholar 

  11. Liu, C., Wechsler, H.: A gabor feature classifier for face recognition. In: Eighth IEEE International Conference on Computer Vision 2, pp. 270–275. IEEE (2001)

    Google Scholar 

  12. Chan, C.-H., Kittler, J., Messer, K.: Multi-scale Local Binary Pattern Histograms for Face Recognition. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 809–818. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Shen, L.L., Bai, L., Fairhurst, M.: Gabor wavelets and general discriminant analysis for face identification and verification. Image and Vision Computing 25(5), 553–563 (2007)

    Article  Google Scholar 

  14. Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)

    Article  Google Scholar 

  15. Zhang, W., Shan, S., Gao, W., Chen, X., Zhang, H.: Local gabor binary pattern histogram sequence (lgbphs): a novel non-statistical model for face representation and recognition. In: Tenth IEEE International Conference on Computer Vision 1, pp. 786–791. IEEE (2005)

    Google Scholar 

  16. Almaev, T.R., Valstar, M.F.: Local gabor binary patterns from three orthogonal planes for automatic facial expression recognition. In: 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction (ACII), pp. 356–361. IEEE (2013)

    Google Scholar 

  17. Deng, H.B., Jin, L.W., Deng, H.B., Jin, L.W.: Facial Expression Recognition Based on Local Gabor Filter Bank and PCA+ LDA. J. Journal of Image and Graphics 12(02), 322–329 (2007)

    Google Scholar 

  18. BNU-LSVED Database. http://www.bnusei.net:8080/BNULSVED/cn_index.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pengfei Xu or Zuying Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Tang, C., Xu, P., Luo, Z., Zhao, G., Zou, T. (2015). Automatic Facial Expression Analysis of Students in Teaching Environments. In: Yang, J., Yang, J., Sun, Z., Shan, S., Zheng, W., Feng, J. (eds) Biometric Recognition. CCBR 2015. Lecture Notes in Computer Science(), vol 9428. Springer, Cham. https://doi.org/10.1007/978-3-319-25417-3_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25417-3_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25416-6

  • Online ISBN: 978-3-319-25417-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics