Skip to main content

A Facial Pose Estimation Algorithm Using Deep Learning

  • Conference paper
  • First Online:
Biometric Recognition (CCBR 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9428))

Included in the following conference series:

  • 2457 Accesses

Abstract

Pose estimation is one of key issues in face recognition in complex background and human-computer interaction. In this paper, we propose a novel algorithm to estimating facial pose using deep learning. We design a convolutional neural network with four convolutional layers, and a fully-connected layer. The experimental results on CMU-PIE database show that the proposed method outperforms previous traditional methods facial pose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zhu, X., Ramanan, D.: Face detection, pose estimation, and landmark localization in the wild. In: CVPR, pp. 2879–2886 (2012)

    Google Scholar 

  2. Younesi, A., Kalbkhani, H., Shayesteh, G.: Robust head pose estimation using locations of facial components. In: Proc. of 16th CSI IEEE Intl Symposium on Artificial Intelligence and Signal Processing, pp. 1–5 (2012)

    Google Scholar 

  3. Jiang, M., Deng, L., Zhang, L., Tang, J., Fan,C.: Head pose estimation based on active shape model. In: Proc. of 2012 IEEE Int’l Conf. on Systems, Man and Cybernetics, pp. 1–4 (2012)

    Google Scholar 

  4. Raytchev, B., Yoda, I., Sakaue, K.: Head pose estimation by nonlinear manifold learning. In: Proc. of 2004 IEEE 17th Int’l Conf. on Pattern Recognition, pp. 462–466 (2004)

    Google Scholar 

  5. Dahmane, A., Larabi, S., Djeraba .C., Bilasco, I. M.: Learning symmetrical model for head pose estimation. In: Proc. of 21 th Int. Conf. on Pattern Recognition, pp. 1–4 (2012)

    Google Scholar 

  6. Zhu, X., Ramanan, D.: Face detection, pose estimation, and landmark localization in the wild. In: CVPR, pp. 2879–2886 (2012)

    Google Scholar 

  7. Wang, J.G., Sung, E.: Em enhancement of 3d head pose estimated by point at infinity. Image and Vision Computing 25(12), 1864–1874 (2007)

    Article  Google Scholar 

  8. Meydanipour, G., Faez, K.: Head pose estimation using histogram of SIFT descriptors. In: 2014 22nd Iranian Conference on Electrical Engineering (ICEE), pp. 976–979. IEEE (2014)

    Google Scholar 

  9. Meydanipour, G., Faez, K.: Robust head pose estimation using contourletSD transform and GLCM. In: 2013 8th Iranian Conference on Machine Vision and Image Processing (MVIP), pp. 375–380. IEEE (2013)

    Google Scholar 

  10. Liu, X., Lu, H., Luo, H.: A new representation method of head images for head pose estimation. In: Proc. of 2009 IEEE 16th Int’l Conf. on Image Processing (ICIP), pp. 3585–3588 (2009)

    Google Scholar 

  11. Xin, G., Yu, X.: Head pose estimation based on multivariate label distribution. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1837–1842. IEEE (2014)

    Google Scholar 

  12. Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convolutional neural networks. In: Proc. NIPS (2012)

    Google Scholar 

  13. Sim, T., Baker, S., Bsat, M.: The CMU pose, illumination, and expression database. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 25(12), 1615–1618 (2003)

    Article  Google Scholar 

  14. Hu, C., Gong, L., Wang, T.: Effective head pose estimation using Lie Algebrized Gaussians. In: 2013 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE (2013)

    Google Scholar 

  15. Ba, S.O., Odobez, J.M.: A probabilistic framework for joint head tracking and pose estimation. In: IEEE International Conference on Pattern Recognition, ICPR (2004)

    Google Scholar 

  16. Brown, L.M., Tian, Y.-L.: Comparative study of coarse head pose estimation. In: IEEE Workshop on Motion and Video Computing, pp. 125–130 (2002)

    Google Scholar 

  17. Tian, Y.-L., Brown, L., Connell, J., Pankanti, S., Hampapur, A., Senior, A., Bolle, R.: Absolute head pose estimation from overhead wide-angle cameras. In: Proc. IEEE Int’l Workshop Analysis and Modeling of Faces and Gestures, pp. 92–99 (2003)

    Google Scholar 

  18. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 1, pp. I-511–I-518 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifang Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

xu, X., Wu, L., Wang, K., Ma, Y., Qi, W. (2015). A Facial Pose Estimation Algorithm Using Deep Learning. In: Yang, J., Yang, J., Sun, Z., Shan, S., Zheng, W., Feng, J. (eds) Biometric Recognition. CCBR 2015. Lecture Notes in Computer Science(), vol 9428. Springer, Cham. https://doi.org/10.1007/978-3-319-25417-3_78

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25417-3_78

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25416-6

  • Online ISBN: 978-3-319-25417-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics