Abstract
Research in swarm robotics and collective behaviors is often focused on homogeneous swarms. However, heterogeneity in behaviors can be advantageous as we know, for example, from studies on social insects. Our objective is to study the hypothesis that there are potential advantages of heterogeneous swarms over homogeneous swarms in an aggregation scenario inspired by behaviors of juvenile honeybees. Even without task switching – that is, with predefined, static roles for certain swarm fractions – we find in our case study that heterogeneous swarms can outperform homogeneous swarms for a predetermined set of basic behaviors. We use methods of evolutionary computation to define behaviors imitating those found in honeybees (random walkers, wall followers, goal finders, immobile agents) and also to find well-adapted swarm fractions of different predetermined behaviors. Our results show that non-trivial distributions of behaviors give better aggregation performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arvin, F., Turgut, A.E., Bazyari, F., Arikan, K.B., Bellotto, N., Yue, S.: Cue-based aggregation with a mobile robot swarm: a novel fuzzy-based method. Adaptive Behavior 22(3), 189–206 (2014)
Arvin, F., Turgut, A.E., Yue, S.: Fuzzy-based aggregation with a mobile robot swarm. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Engelbrecht, A.P., Groß, R., Stützle, T. (eds.) ANTS 2012. LNCS, vol. 7461, pp. 346–347. Springer, Heidelberg (2012)
Beni, G.: From swarm intelligence to swarm robotics. In: Şahin, E., Spears, W.M. (eds.) Swarm Robotics 2004. LNCS, vol. 3342, pp. 1–9. Springer, Heidelberg (2005)
Berman, S., et al.: Optimized stochastic policies for task allocation in swarms of robots. Robotics, IEEE Transactions on 25(4), 927–937 (2009)
Bodi, M., Thenius, R., Szopek, M., Schmickl, T., Crailsheim, K.: Interaction of robot swarms using the honeybee-inspired control algorithm beeclust. Mathematical and Computer Modelling of Dynamical Systems 18(1), 87–100 (2012)
Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford Univ Press (1999)
Campbell, A., Wu, A.S.: Multi-agent role allocation: issues, approaches, and multiple perspectives. Autonomous Agents & Multi-Agent Systems 22, 317–355 (2011)
Couzin, I.D., Krause, J., Franks, N.R., Levin, S.A.: Effective leadership and decision-making in animal groups on the move. Nature 433, 513–516 (2005)
Dorigo, M., et al.: Swarmanoid: a novel concept for the study of heterogeneous robotic swarms. IEEE Robotics & Automation Magazine 20(4), 60–71 (2013)
Dorigo, M., Bonabeau, E., Theraulaz, G.: Ant algorithms and stigmergy. Future Generation Computer Systems 16(9), 851–871 (2000)
Ferrante, E., Dúeñez Guzḿan, E., Turgut, A.E., Wenseleers, T.: Evolution of task partitioning in swarm robotics. In: et al., V.T. (ed.) Proceedings of the Workshop on Collective Behaviors and Social Dynamics of the European Conference on Artificial Life (ECAL 2013) (2013)
Garnier, S., Gautrais, J., Asadpour, M., Jost, C., Theraulaz, G.: Self-organized aggregation triggers collective decision making in a group of cockroach-like robots. Adaptive Behavior 17(2), 109–133 (2009)
Hamann, H.: Towards swarm calculus: Urn models of collective decisions and universal properties of swarm performance. Swarm Intelligence 7(2–3), 145–172 (2013)
Hamann, H., Karsai, I., Schmickl, T.: Time delay implies cost on task switching: A model to investigate the efficiency of task partitioning. Bulletin of Mathematical Biology 75(7), 1181–1206 (2013)
Hamann, H., Meyer, B., Schmickl, T., Crailsheim, K.: A model of symmetry breaking in collective decision-making. In: Doncieux, S., Girard, B., Guillot, A., Hallam, J., Meyer, J.-A., Mouret, J.-B. (eds.) SAB 2010. LNCS, vol. 6226, pp. 639–648. Springer, Heidelberg (2010)
Hereford, J.M.: Analysis of BEECLUST swarm algorithm. In: Proc. of the IEEE Symposium on Swarm Intelligence (SIS 2011), pp. 192–198. IEEE (2011)
Hölldobler, B., Wilson, E.: The ants. Belknap Press of Harvard University (1990)
Kengyel, D., Schmickl, T., Hamann, H., Thenius, R., Crailsheim, K.: Embodiment of honeybee’s thermotaxis in a mobile robot swarm. In: Kampis, G., Karsai, I., Szathmáry, E. (eds.) ECAL 2009, Part II. LNCS, vol. 5778, pp. 69–76. Springer, Heidelberg (2011)
Kengyel, D., Thenius, R., Crailsheim, K., Schmickl, T.: Influence of a social gradient on a swarm of agents controlled by the beeclust algorithm. Advances in Artificial Life. In: Proceedings of the 12th European Conference on the Synthesis and Simulation of Living Systems, ECAL 2013 12, pp. 1041–1048 (2013)
Kengyel, D., Wotawa, F., Schmickl, T.: Towards swarm level programming: The role of different movement patterns in swarm systems. Swarm Intelligence (2014), submitted
Kernbach, S., Thenius, R., Kornienko, O., Schmickl, T.: Re-embodiment of honeybee aggregation behavior in an artificial micro-robotic swarm. Adaptive Behavior 17, 237–259 (2009)
Khaluf, Y., Birattari, M., Hamann, H.: A swarm robotics approach to task allocation under soft deadlines and negligible switching costs. In: del Pobil, A.P., Chinellato, E., Martinez-Martin, E., Hallam, J., Cervera, E., Morales, A. (eds.) SAB 2014. LNCS, vol. 8575, pp. 270–279. Springer, Heidelberg (2014)
Labella, T.H., Dorigo, M., Deneubourg, J.L.: Division of labor in a group of robots inspired by ants’ foraging behavior. ACM Transactions on Autonomous and Adaptive Systems (TAAS) 1(1), 4–25 (2006)
Lenaghan, S., Wang, Y., Xi, N., Fukuda, T., Tarn, T., Hamel, W., Zhang, M.: Grand challenges in bioengineered nanorobotics for cancer therapy. IEEE Transactions on Biomedical Engineering 60(3), 667–673 (2013)
Liu, X., Li, X., Shi, X., Huang, K., Liu, Y.: A multi-type ant colony optimization (maco) method for optimal land use allocation in large areas. International Journal of Geographical Information Science 26(7), 1325–1343 (2012)
Lorenz, K.: Vergleichende Verhaltensforschung: Grundlagen der Ethologie. Springer (1978)
Rubenstein, M., Ahler, C., Hoff, N., Cabrera, A., Nagpal, R.: Kilobot: A low cost robot with scalable operations designed for collective behaviors. Robotics and Autonomous Systems 62(7), 966–975 (2014)
Rubenstein, M., Cornejo, A., Nagpal, R.: Programmable self-assembly in a thousand-robot swarm. Science 345(6198), 795–799 (2014)
Schmickl, T., Crailsheim, K.: TaskSelSim: a model of the self-organization of the division of labour in honeybees. Mathematical and Computer Modelling of Dynamical Systems 14, 101–125 (2008)
Schmickl, T., Hamann, H.: BEECLUST: a swarm algorithm derived from honeybees. In: Xiao, Y. (ed.) Bio-inspired Computing and Communication Networks. CRC Press, March 2011
Schmickl, T., Thenius, R., Möslinger, C., Radspieler, G., Kernbach, S., Crailsheim, K.: Get in touch: Cooperative decision making based on robot-to-robot collisions. Autonomous Agents and Multi-Agent Systems 18(1), 133–155 (2008)
Seeley, T.D.: Adaptive significance of the age polyethism schedule in honeybee colonies. Behavioral Ecology and Sociobiology 11, 287–293 (1982)
Seeley, T.D.: Honey bee foragers as sensory units of their colonies. Behavioral Ecology and Sociobiology 34, 51–62 (1994)
Szopek, M., Schmickl, T., Thenius, R., Radspieler, G., Crailsheim, K.: Dynamics of collective decision making of honeybees in complex temperature fields. PLoS ONE 8(10), e76250 (2013)
Wilson, E.: The relation between caste ratios and division of labour in the ant genus Pheidole (Hymenoptera: Formicidae). Behav. Ecol. Sociobiol. 16, 89–98 (1984)
Yong, C.H., et al.: Coevolution of role-based cooperation in multiagent systems. IEEE Transactions on Autonomous Mental Development 1(3), 170–186 (2009)
Zahadat, P., Crailsheim, K., Schmickl, T.: Social inhibition manages division of labour in artificial swarm systems. In: Lio, P., Miglino, O., Nicosia, G., Nolfi, S., Pavone, M. (eds.) 12th European Conference on Artificial Life (ECAL 2013), pp. 609–616. MIT Press (2013)
Zahadat, P., Schmickl, T.: Wolfpack-inspired evolutionary algorithm and a reaction-diffusion-based controller are used for pattern formation. In: Proceedings of the 2014 Conference on Genetic and Evolutionary Computation, pp. 241–248. GECCO 2014, ACM, New York, USA (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Kengyel, D., Hamann, H., Zahadat, P., Radspieler, G., Wotawa, F., Schmickl, T. (2015). Potential of Heterogeneity in Collective Behaviors: A Case Study on Heterogeneous Swarms. In: Chen, Q., Torroni, P., Villata, S., Hsu, J., Omicini, A. (eds) PRIMA 2015: Principles and Practice of Multi-Agent Systems. PRIMA 2015. Lecture Notes in Computer Science(), vol 9387. Springer, Cham. https://doi.org/10.1007/978-3-319-25524-8_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-25524-8_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-25523-1
Online ISBN: 978-3-319-25524-8
eBook Packages: Computer ScienceComputer Science (R0)