Skip to main content

“Go Ahead, Please”: Recognition and Resolution of Conflict Situations in Narrow Passages for Polite Mobile Robot Navigation

  • Conference paper
  • First Online:
Social Robotics (ICSR 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9388))

Included in the following conference series:

Abstract

For a mobile assistive robot operating in a human-populated environment, a polite navigation is an important requirement for the social acceptance. When operating in a confined environment, narrow passages can lead to deadlock situations with persons. In our approach we distinguish two types of deadlock situations at narrow passages, in which the robot lets the conflicting person pass, and either waits in a non-disturbing waiting position, or forms a queue with that person. Forthcoming deadlock situations are captured by a set of qualitative features. As part of these features, we detect narrow passages with a raycasting approach and predict the movement of persons. In contrast to numerical features, the qualitative description forms a more compact human-understandable space allowing to employ a rule-based decision tree to classify the considered situation types. To determine a non-disturbing waiting position, a multi-criteria optimization approach is used together with the Particle Swarm Optimization as solver. In field tests, we evaluated our approach for deadlock recognition in a hospital environment with narrow corridors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beck, A., Risager, C., Andersen, N., Ravn, O.: Spacio-temporal situation assessment for mobile robots. In: Proc. Conf. FUSION, pp. 1–8 (2011)

    Google Scholar 

  2. Bennewitz, M., et al.: Learning motion patterns of people for compliant robot motion. The International Journal of Robotics Research 24(1), 31–48 (2005)

    Article  Google Scholar 

  3. Dakulovic, M., et al.: Avoiding deadlocks of mobile robots in narrow passages of environments populated with moving obstacles. In: AIM, pp. 936–941 (2011)

    Google Scholar 

  4. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1(1), 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  5. Einhorn, E., Gross, H.M.: Generic 2d/3d slam with ndt maps for lifelong application. In: European Conference on Mobile Robots (ECMR), pp. 240–247 (2013)

    Google Scholar 

  6. Einhorn, E., Langner, T., Stricker, R., Martin, C., Gross, H.M.: MIRA - middleware for robotic applications. In: Proc. IEEE/RSJ IROS, pp. 2591–2598 (2012)

    Google Scholar 

  7. Ferrer, G., Sanfeliu, A.: Proactive kinodynamic planning using the extended social force model and human motion prediction in urban environments. In: Proc. IEEE/RSJ IROS, pp. 1730–1735 (2014)

    Google Scholar 

  8. Fox, D., Burgard, W., Thrun, S.: The dynamic window approach to collision avoidance. IEEE Robotics Automation Magazine 4(1), 23–33 (1997)

    Article  Google Scholar 

  9. Gindele, T., et al.: A probabilistic model for estimating driver behaviors and vehicle trajectories in traffic environments. In: ITSC, pp. 1625–1631 (2010)

    Google Scholar 

  10. Gross, H.M., Debes, K., Einhorn, E., Mueller, S., Scheidig, A., Weinrich, C., Bley, A., Martin, C.: Mobile robotic rehabilitation assistant for walking and orientation training of stroke patients: a report on work in progress. In: Proc. IEEE Conf. on SMC, pp. 1880–1887 (2014)

    Google Scholar 

  11. Hall, E.T., et al.: Proxemics [and comments and replies]. Current Anthropology, pp. 83–108 (1968)

    Google Scholar 

  12. Hanheide, M., et al.: Analysis of human-robot spatial behaviour applying a qualitative trajectory calculus. In: Proc. IEEE Symp. RO-MAN, pp. 689–694 (2012)

    Google Scholar 

  13. Hart, P., et al.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. on Systems Science and Cybernetics 4(2), 100–107 (1968)

    Article  Google Scholar 

  14. Henry, P., Vollmer, C., Ferris, B., Fox, D.: Learning to navigate through crowded environments. In: Proc. IEEE ICRA, pp. 981–986 (2010)

    Google Scholar 

  15. Jähne, B.: Digital Image Processing. Engineering Pro collection. Springer, Heidelberg (2005)

    Google Scholar 

  16. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc. IEEE Int. Conf. on Neural Networks, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  17. Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013)

    Article  Google Scholar 

  18. LaValle, S.M., Kuffner, J.J.: Randomized kinodynamic planning. The International Journal of Robotics Research 20(5), 378–400 (2001)

    Article  Google Scholar 

  19. Liebner, M., et al.: Driver intent inference at urban intersections using the intelligent driver model. In: Proc. IEEE IV Symp., pp. 1162–1167 (2012)

    Google Scholar 

  20. McCall, J., Trivedi, M.: Performance evaluation of a vision based lane tracker designed for driver assistance systems. In: Proc. IEEE IV Symp., pp. 153–158 (2005)

    Google Scholar 

  21. Meyer-Delius, D., et al.: Probabilistic situation recognition for vehicular traffic scenarios. In: Proc. IEEE ICRA, pp. 459–464 (2009)

    Google Scholar 

  22. Philippsen, R., Siegwart, R.: An interpolated dynamic navigation function. In: Proc. IEEE ICRA, pp. 3782–3789 (2005)

    Google Scholar 

  23. Svenstrup, M., et al.: Trajectory planning for robots in dynamic human environments. In: Proc. IEEE/RSJ IROS, pp. 4293–4298 (2010)

    Google Scholar 

  24. Vasquez, D., et al.: Inverse reinforcement learning algorithms and features for robot navigation in crowds: an experimental comparison. In: IROS, pp. 1341–1346 (2014)

    Google Scholar 

  25. Volkhardt, M., Weinrich, C., Gross, H.M.: Multi-modal people tracking on a mobile companion robot. In: European Conference on Mobile Robots (ECMR), pp. 288–293 (2013)

    Google Scholar 

  26. Weinrich, C., Wengefeld, T., Schroeter, C., Gross, H.M.: People detection and distinction of their walking aids in 2d laser range data based on generic distance-invariant features. In: Proc. IEEE Symp. RO-MAN, pp. 767–773. IEEE (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanh Q. Trinh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Trinh, T.Q., Schroeter, C., Kessler, J., Gross, HM. (2015). “Go Ahead, Please”: Recognition and Resolution of Conflict Situations in Narrow Passages for Polite Mobile Robot Navigation. In: Tapus, A., André, E., Martin, JC., Ferland, F., Ammi, M. (eds) Social Robotics. ICSR 2015. Lecture Notes in Computer Science(), vol 9388. Springer, Cham. https://doi.org/10.1007/978-3-319-25554-5_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25554-5_64

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25553-8

  • Online ISBN: 978-3-319-25554-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics