Abstract
Datasets are used in various applications assisting in performing reasoning and grouping actions on available data (e.g., clustering, classification, recommendations). Such sources of information may contain aspects relevant to context. In order to use to the fullest this context and draw useful conclusions, it is vital to have intelligent techniques that understand which portions of the dataset are relevant to context and what kind of context they represent. In this work we address the above issue by proposing a context extraction technique from existing datasets. We present a process that maps the given data of a dataset to a specific context concept. The prototype of our work is evaluated through an initial collection of datasets collected from various online sources.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abowd, G.D., Dey, A.K.: Towards a better understanding of context and context-awareness. In: Gellersen, H.-W. (ed.) HUC 1999. LNCS, vol. 1707, pp. 304–307. Springer, Heidelberg (1999)
Aciar, S.: Mining context information from consumers reviews. In: Proceedings of Workshop on Context-Aware Recommender System, vol. 201. ACM (2010)
Adomavicius, G., Sankaranarayanan, R., Sen, S., Tuzhilin, A.: Incorporating contextual information in recommender systems using a multidimensional approach. ACM Trans. Inf. Syst. (TOIS) 23(1), 103–145 (2005)
Adomavicius, G., Tuzhilin, A.: Context-aware recommender systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 217–253. Springer, New York (2011)
Baltrunas, L., Kaminskas, M., Ricci, F., Rokach, L., Shapira, B., Luke, K.H.: Best usage context prediction for music tracks. In: Proceedings of the 2nd Workshop on Context Aware Recommender Systems (2010)
Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan, A., Riboni, D.: A survey of context modelling and reasoning techniques. Pervasive Mob. Comput. 6(2), 161–180 (2010)
Cantador, I., Brusilovsky, P., Kuflik, T.: 2nd workshop on information heterogeneity and fusion in recommender systems (hetrec 2011). In: Proceedings of the 5th ACM conference on Recommender systems. RecSys 2011. ACM, New York (2011)
Chen, G., Kotz, D., et al.: A survey of context-aware mobile computing research. Technical Report TR2000-381, Department of Computer Science, Dartmouth College (2000)
Cohen, W., Ravikumar, P., Fienberg, S.: A comparison of string metrics for matching names and records. In: KDD Workshop on Data Cleaning and Object Consolidation. vol. 3, pp. 73–78 (2003)
Domingues, M.A., Jorge, A.M., Soares, C.: Using contextual information as virtual items on top-n recommender systems. arXiv preprint arXiv:1111.2948 (2011)
Marianne, H., Mathieu, L., Clémentine, N., Jean-Rémy, F.: Metamodel matching for automatic model transformation generation. In: Ober, I., Uhl, A., Völter, M., Bruel, J.-M., Czarnecki, K. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 326–340. Springer, Heidelberg (2008)
Hansen, J., Sato, M., Ruedy, R., Lo, K., Lea, D.W., Medina-Elizade, M.: Global temperature change. Proc. Nat. Acad. Sci. 103(39), 14288–14293 (2006)
Kaluža, B., Mirchevska, V., Dovgan, E., Luštrek, M., Gams, M.: An agent-based approach to care in independent living. In: de Ruyter, B., Wichert, R., Keyson, D.V., Markopoulos, P., Streitz, N., Divitini, M., Georgantas, N., Mana Gomez, A. (eds.) AmI 2010. LNCS, vol. 6439, pp. 177–186. Springer, Heidelberg (2010)
Kapitsaki, G.M., Achilleos, A.P.: Model matching for web services on context dependencies. In: Proceedings of the 14th International Conference on Information Integration and Web-based Applications & Services, pp. 45–53. ACM (2012)
Lombardi, S., Anand, S.S., Gorgoglione, M.: Context and customer behaviour in recommendation (2009)
Lovett, T., O’Neill, E. (eds.): Mobile Context Awareness. Springer, London (2012)
Mettouris, C., Papadopoulos, G.A.: Cars context modelling (2014)
Mettouris, C., Papadopoulos, G.A.: Ubiquitous recommender systems. Computing 96(3), 223–257 (2014)
Munguia Tapia, E.: Activity recognition in the home setting using simple and ubiquitous sensors. Ph.D. thesis, Massachusetts Institute of Technology (2003)
Schmidt, A., Beigl, M., Gellersen, H.W.: There is more to context than location. Comput. Graph. 23(6), 893–901 (1999)
Sielis, G.A., Mettouris, C., Papadopoulos, G.A., Tzanavari, A., Dols, R.M., Siebers, Q.: A context aware recommender system for creativity support tools. J. UCS 17(12), 1743–1763 (2011)
Sielis, G.A., Mettouris, C., Tzanavari, A., Papadopoulos, G.A.: Context-aware recommendations using topic maps technology for the enhancement of the creativity process. In: Educational Recommender Systems and Technologies: Practices and Challenges: Practices and Challenges, p. 43 (2011)
Stark, M.M., Riesenfeld, R.F.: Wordnet: an electronic lexical database. In: Proceedings of 11th Eurographics Workshop on Rendering. MIT Press (1998)
Suen, C.Y.: n-gram statistics for natural language understanding and text processing. IEEE Trans. PAMI-Pattern Anal. Mach. Intell. 1(2), 164–172 (1979)
Suthaharan, S., Alzahrani, M., Rajasegarar, S., Leckie, C., Palaniswami, M.: Labelled data collection for anomaly detection in wireless sensor networks. In: 2010 Sixth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), pp. 269–274. IEEE (2010)
Heinze, T., Voigt, K.: Metamodel matching based on planar graph edit distance. In: Gogolla, M., Tratt, L. (eds.) ICMT 2010. LNCS, vol. 6142, pp. 245–259. Springer, Heidelberg (2010)
Zheng, Y., Burke, R., Mobasher, B.: Differential context relaxation for context-aware travel recommendation. In: Lops, P., Huemer, C. (eds.) EC-Web 2012. LNBIP, vol. 123, pp. 88–99. Springer, Heidelberg (2012)
Ziegler, C.N., McNee, S.M., Konstan, J.A., Lausen, G.: Improving recommendation lists through topic diversification. In: Proceedings of the 14th international conference on World Wide Web, pp. 22–32. ACM (2005)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Kapitsaki, G.M., Kalaitzidou, G., Mettouris, C., Achilleos, A.P., Papadopoulos, G.A. (2015). Identifying Context Information in Datasets. In: Christiansen, H., Stojanovic, I., Papadopoulos, G. (eds) Modeling and Using Context. CONTEXT 2015. Lecture Notes in Computer Science(), vol 9405. Springer, Cham. https://doi.org/10.1007/978-3-319-25591-0_16
Download citation
DOI: https://doi.org/10.1007/978-3-319-25591-0_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-25590-3
Online ISBN: 978-3-319-25591-0
eBook Packages: Computer ScienceComputer Science (R0)