Skip to main content

Families of the Granules for Association Rules and Their Properties

  • Conference paper
Rough Sets and Knowledge Technology (RSKT 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9436))

Included in the following conference series:

  • 1058 Accesses

Abstract

We employed the granule (or the equivalence class) defined by a descriptor in tables, and investigated rough set-based rule generation. In this paper, we consider the new granules defined by an implication, and propose a family of the granules defined by an implication in a table with exact data. Each family consists of the four granules, and we show that three criterion values, support, accuracy, and coverage, can easily be obtained by using the four granules. Then, we extend this framework to tables with non-deterministic data. In this case, each family consists of the nine granules, and the minimum and the maximum values of three criteria are also obtained by using the nine granules. We prove that there is a table causing support and accuracy the minimum, and generally there is no table causing support, accuracy, and coverage the minimum. Finally, we consider the application of these properties to Apriori-based rule generation from uncertain data. These properties will make Apriori-based rule generation more effective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Proceedings of VLDB’94, pp. 487–499. Morgan Kaufmann (1994)

    Google Scholar 

  2. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery of association rules. In: Advances in Knowledge Discovery and Data Mining, pp. 307–328. AAAI/MIT Press (1996)

    Google Scholar 

  3. Blackburn, P., et al.: Modal Logic. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  4. Frank, A., Asuncion, A.: UCI machine learning repository. Irvine, CA: University of California, School of Information and Computer Science (2010). http://mlearn.ics.uci.edu/MLRepository.html

  5. Grzymała-Busse, J.W.: Data with missing attribute values: generalization of indiscernibility relation and rule induction. Trans. Rough Sets 1, 78–95 (2004)

    Google Scholar 

  6. Lipski, W.: On semantic issues connected with incomplete information databases. ACM Trans. Database Syst. 4(3), 262–296 (1979)

    Article  Google Scholar 

  7. Lipski, W.: On databases with incomplete information. J. ACM 28(1), 41–70 (1981)

    Article  MathSciNet  Google Scholar 

  8. Nakata, M., Sakai, H.: Twofold rough approximations under incomplete information. Int. J. Gen. Syst. 42(6), 546–571 (2013)

    Article  MathSciNet  Google Scholar 

  9. Orłowska, E., Pawlak, Z.: Representation of nondeterministic information. Theor. Comput. Sci. 29(1–2), 27–39 (1984)

    Article  MathSciNet  Google Scholar 

  10. Pawlak, Z.: Information systems theoretical foundations. Inf. Syst. 6(3), 205–218 (1981)

    Article  Google Scholar 

  11. Pawlak, Z.: Systemy Informacyjne: Podstawy Teoretyczne (in Polish) WNT (1983)

    Google Scholar 

  12. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)

    Book  Google Scholar 

  13. Sakai, H., Ishibashi, R., Koba, K., Nakata, M.: Rules and apriori algorithm in non-deterministic information systems. Trans. Rough Sets 9, 328–350 (2008)

    Google Scholar 

  14. Sakai, H., Wu, M., Nakata, M.: Division charts as granules and their merging algorithm for rule generation in nondeterministic data. Int. J. Intell. Syst. 28(9), 865–882 (2013)

    Article  Google Scholar 

  15. Sakai, H., Wu, M., Nakata, M.: Apriori-based rule generation in incomplete information databases and non-deterministic information systems. Fundam. Informaticae 130(3), 343–376 (2014)

    Article  MathSciNet  Google Scholar 

  16. Sakai, H., Wu, M., Nakata, M.: The completeness of NIS-Apriori algorithm and a software tool getRNIA. In: Proceedings of International Conference on AAI2014, pp. 115–121 (2014)

    Google Scholar 

  17. Skowron, A., Rauszer, C.: The discernibility matrices and functions in information systems. In: Słowiński, R. (ed.) Intelligent Decision Support - Handbook of Advances and Applications of the Rough Set Theory, pp. 331–362. Kluwer Academic Publishers, Dordrecht (1992)

    Chapter  Google Scholar 

  18. Wu, M., Sakai, H.: getRNIA web software (2013). http://getrnia.org

  19. Wu, M., Nakata, M., Sakai, H.: An overview of the getRNIA system for non-deterministic data. Procedia Comput. Sci. 22, 615–622 (2013)

    Article  Google Scholar 

Download references

Acknowledgment

The authors would be grateful for reviewers’ useful comments. This work is supported by JSPS (Japan Society for the Promotion of Science) KAKENHI Grant Number 26330277.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Sakai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Sakai, H., Liu, C., Nakata, M. (2015). Families of the Granules for Association Rules and Their Properties. In: Ciucci, D., Wang, G., Mitra, S., Wu, WZ. (eds) Rough Sets and Knowledge Technology. RSKT 2015. Lecture Notes in Computer Science(), vol 9436. Springer, Cham. https://doi.org/10.1007/978-3-319-25754-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25754-9_16

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25753-2

  • Online ISBN: 978-3-319-25754-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics