Skip to main content

Detecting Methane Outbreaks from Time Series Data with Deep Neural Networks

  • Conference paper
  • First Online:
Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9437))

Abstract

Hazard monitoring systems play a key role in ensuring people’s safety. The problem of detecting dangerous levels of methane concentration in a coal mine was a subject of IJCRS’15 Data Challenge competition. The challenge was to predict, from multivariate time series data collected by sensors, if methane concentration reaches a dangerous level in the near future. In this paper we present our solution to this problem based on the ensemble of Deep Neural Networks. In particular, we focus on Recurrent Neural Networks with Long Short-Term Memory (LSTM) cells.

K. Pawłowski and K. Kurach—Both authors contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. CoRR abs/1409.0473 (2014). http://arxiv.org/abs/1409.0473

  2. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    Article  MATH  Google Scholar 

  3. Collobert, R., Kavukcuoglu, K., Farabet, C.: Torch7: A matlab-like environment for machine learning. In: BigLearn, NIPS Workshop, No. EPFL-CONF-192376 (2011)

    Google Scholar 

  4. Connor, J.T., Martin, R.D., Atlas, L.E.: Recurrent neural networks and robust time series prediction. IEEE Trans. Neural Netw. 5(2), 240–254 (1994)

    Article  Google Scholar 

  5. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, p. 1. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  6. Donoghue, A.: Occupational health hazards in mining: an overview. Occup. Med. 54(5), 283–289 (2004)

    Article  Google Scholar 

  7. Freund, Y., Schapire, R., Abe, N.: A short introduction to boosting. J.-Jpn. Soc. Artif. Intell. 14(771–780), 1612 (1999)

    Google Scholar 

  8. Giles, C.L., Lawrence, S., Tsoi, A.C.: Noisy time series prediction using recurrent neural networks and grammatical inference. Mach. Learn. 44(1–2), 161–183 (2001)

    Article  MATH  Google Scholar 

  9. Girosi, F., Jones, M.B., Poggio, T.: Regularization theory and neural networks architectures. Neural comput. 7(2), 219–269 (1995)

    Article  Google Scholar 

  10. Graves, A., Mohamed, A.R., Hinton, G.: Speech recognition with deep recurrent neural networks. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2013, pp. 6645–6649. IEEE (2013)

    Google Scholar 

  11. Graves, A.: Generating sequences with recurrent neural networks, CoRR abs/1308.0850 (2013). http://arxiv.org/abs/1308.0850

  12. Graves, A., Liwicki, M., Fernández, S., Bertolami, R., Bunke, H., Schmidhuber, J.: A novel connectionist system for unconstrained handwriting recognition. IEEE Trans. Pattern Anal. Mach. Intell. 31(5), 855–868 (2009)

    Article  Google Scholar 

  13. Graves, A., Wayne, G., Danihelka, I.: Neural turing machines, CoRR abs/1410.5401 (2014). http://arxiv.org/abs/1410.5401

  14. Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A.R., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T.N., et al.: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process. Mag. 29(6), 82–97 (2012)

    Article  Google Scholar 

  15. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  16. Janusz, A., Ślęzak, D., Sikora, M., Wróbel, L., Stawicki, S., Grzegorowski, M., Wojtas, P.: Mining data from coal mines: IJCRS 2015 data challenge. In: Proceedings of IJCRS 2015. LNCS, Springer (2015), in print November 2015

    Google Scholar 

  17. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp. 1097–1105 (2012)

    Google Scholar 

  18. Le, Q.V.: Building high-level features using large scale unsupervised learning. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2013, pp. 8595–8598. IEEE (2013)

    Google Scholar 

  19. Prechelt, L.: Early stopping - but when? In: Orr, G.B., Müller, K.-R. (eds.) NIPS-WS 1996. LNCS, vol. 1524, p. 55. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  20. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Sundermeyer, M., Schlüter, R., Ney, H.: Lstm neural networks for language modeling. In: INTERSPEECH (2012)

    Google Scholar 

  22. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112 (2014)

    Google Scholar 

  23. Szlązak, N., Obracaj, D., Borowski, M., Swolkień, J., Korzec, M.: Monitoring and controlling methane hazard in excavations in hard coal mines. AGH J. Min. Geoengineering 37, 105–116 (2013)

    Article  Google Scholar 

  24. Werbos, P.: Beyond regression: new tools for prediction and analysis in the behavioral sciences, Ph.D. thesis, Harvard University, Cambridge (1974)

    Google Scholar 

  25. Werbos, P.J.: Generalization of backpropagation with application to a recurrent gas market model. Neural Netw. 1(4), 339–356 (1988)

    Article  Google Scholar 

  26. Wolpert, D.H.: Stacked generalization. Neural Netw. 5(2), 241–259 (1992)

    Article  Google Scholar 

  27. Zaremba, W., Sutskever, I., Vinyals, O.: Recurrent neural network regularization, CoRR abs/1409.2329 (2014). http://arxiv.org/abs/1409.2329

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Pawłowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Pawłowski, K., Kurach, K. (2015). Detecting Methane Outbreaks from Time Series Data with Deep Neural Networks. In: Yao, Y., Hu, Q., Yu, H., Grzymala-Busse, J.W. (eds) Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. Lecture Notes in Computer Science(), vol 9437. Springer, Cham. https://doi.org/10.1007/978-3-319-25783-9_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25783-9_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25782-2

  • Online ISBN: 978-3-319-25783-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics