Skip to main content

A New Similarity Measure for an Ontology Matching System

  • Conference paper
  • First Online:
Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2014)

Abstract

The purpose of this paper is twofold. It describes a new similarity measure which is applied in a new ontology matching algorithm, OntoPhil that exploits both the lexical and structural information of the input ontologies. The different steps of the algorithm as well as some clarifying examples are also provided. In addition, OntoPhil is also compared and evaluated using the datasets from well-known Ontology Alignment Evaluation Initiative.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  2. Antoniou, G., van Harmelen, F.: Semantic Web Primer. The MIT Press, Cambridge (2004)

    Google Scholar 

  3. Doan, A., Halevy, A.Y.: Semantic integration research in the database community: a brief survey. Am. Assoc. AI 26, 83–94 (2005)

    Google Scholar 

  4. van Aart, C., Pels, R., Caire, G., Bergenti, F.: Creating and using ontologies in agent communication. In: Proceedings of the Workshop on Ontologies in Agent Systems (AOAS 2002), pp. 1–8 (2002)

    Google Scholar 

  5. Suárez-Figuero, C., García-Castro, R., Villazón-Terrazas, B., Gómez-Pérez, A.: Essentials in ontology engineering: methodologies, languages, and tools. In: Proceedings of the 2nd Workshop organized by the EEBuildings Data Models community. CIB conference W078-W012, pp. 9–21 (2011)

    Google Scholar 

  6. W3C: OWL 2: Web Ontology Language (2013)

    Google Scholar 

  7. W3C: OWL: Web Ontology Language (2013)

    Google Scholar 

  8. Cuenca-Grau, B., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P., Sattler, U.: OWL 2: the next step for OWL. J. Web Semant. Sci. Serv. Agents World Wide Web 6, 309–332 (2008)

    Article  Google Scholar 

  9. Shvaiko, P., Euzenat, J.: Ontology matching: state of the art and future challenges. IEEE Trans. Knowl. Softw. Eng. 25(1), 158–176 (2013)

    Article  Google Scholar 

  10. Ehrig, M., Euzenat, J.: Relaxed precision and recall for ontology matching. Integrating Ontol. 156, 8 (2005)

    Google Scholar 

  11. Otero-Cerdeira, L., Rodríguez-Martínez, F.J., Gómez-Rodríguez, A.: Definition of an ontology matching algorithm for context integration in smart cities. Sensors 14, 23581–23619 (2014)

    Article  Google Scholar 

  12. Cohen, W.W., Ravikumar, P.D., Fienberg, S.E.: A comparison of string distance metrics for name-matching tasks. In: Proceedings of International Joint Conference on A.I Workshop on Information Integration, pp. 73–78 (2003)

    Google Scholar 

  13. Euzenat, J., Meilicke, C., Stuckenschmidt, H., Shvaiko, P., Trojahn, C.: Ontology alignment evaluation initiative: six years of experience. In: Spaccapietra, S. (ed.) Journal on Data Semantics XV. LNCS, vol. 6720, pp. 158–192. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Giunchiglia, F., Yatskevich, M., Avesani, P., Shvaiko, P.: A large scale dataset for the evaluation of ontology matching systems. Knowl. Eng. Rev. 23, 1–22 (2008)

    Google Scholar 

  15. Tordai, A., van Ossenbruggen, J., Schreiber, G., Wielinga, B.: Let’s agree to disagree: on the evaluation of vocabulary alignment. In: Proceedings of the Sixth International Conference on Knowledge Capture (K-CAP 2011), pp. 65–72 (2011)

    Google Scholar 

  16. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, New York (2008)

    Book  MATH  Google Scholar 

  17. Akbari, I., Fathian, M.: A novel algorithm for ontology matching. J. Inf. Sci. 36, 12 (2010)

    Article  Google Scholar 

  18. Caracciolo, C., Euzenat, J., Hollink, L., Ichise, R., Isaac, A., Malaisé, V., Meilicke, C., Pane, J., Shvaiko, P., Stuckenschmidt, H., Šváb-Zamazal, O., Svátek, V.: Results of the ontology alignment evaluation initiative 2008. In: Ontology Matching Workshop (2009)

    Google Scholar 

  19. Aguirre, J.L., Eckert, K., Euzenat, J., Ferrara, A., van Hage, W. R., Hollink, L., Meilicke, C., Nikolov, A., Ritze, D., Scharffe, F., Shvaiko, P., Svab-Zamazal, O., Trojahn, C., Bernardo, E. J. R., Grau, C., Zapilko, B.: Results of the ontology alignment evaluation initiative 2012. In: The 7th International Workshop on Ontology Matching (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorena Otero-Cerdeira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Otero-Cerdeira, L., Rodríguez-Martínez, F.J., Valencia-Requejo, T., Gómez-Rodríguez, A. (2015). A New Similarity Measure for an Ontology Matching System. In: Fred, A., Dietz, J., Aveiro, D., Liu, K., Filipe, J. (eds) Knowledge Discovery, Knowledge Engineering and Knowledge Management. IC3K 2014. Communications in Computer and Information Science, vol 553. Springer, Cham. https://doi.org/10.1007/978-3-319-25840-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25840-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25839-3

  • Online ISBN: 978-3-319-25840-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics